Advertisement

Electrically conductive fabric coated with polyaniline: physicochemical characterisation and antibacterial assessment

  • Siti Nurzatul Ikma Omar
  • Zaidah Zainal AriffinEmail author
  • Azlan Zakaria
  • Muhd Fauzi Safian
  • Mohamed Izzharif Abd Halim
  • Rosmamuhamadani Ramli
  • Zarif Mohamed Sofian
  • Meor Faisal Zulkifli
  • Muhammad Faiz Aizamddin
  • Mohd Muzamir MahatEmail author
Original Article

Abstract

The present study investigated the potential antibacterial property of conductive cotton and polyester (PES) fabric coated with polyaniline (PANI). Phytic acid (10, 20, and 30% v/v) was used as a dopant. The fabricated fabric was produced via immersion technique with an immersion time of 30 minutes. The structural identification, conductivity, and morphological properties of prepared fabric were characterised with Fourier transform infrared spectroscopy (FT–IR), electrochemical impedance spectroscopy (EIS), and field emission scanning electron microscope (FESEM), respectively. The optimum conductivities of 2.28 × 10–4 S/m (for cotton) and 2.15 × 10–2 S/m (for PES) were recorded when doped with 30% (v/v) phytic acid. The antibacterial test showed that the fabricated fabric had relatively high antibacterial activity against K. pneumoniae, S. aureus, and E. coli strains.

Keywords

Polyaniline Conductive fabrics Phytic acid Antibacterial properties 

Notes

Acknowledgements

Authors gratefully thank Institute of Research Management & Innovation (IRMI) Universiti Teknologi MARA (UiTM), Malaysia, for funding this project under GIP (600-IRMI 5/3/GIP (010/2019) – Electronic and Antibacterial Properties of Polyaniline Coated on Polyester Fabrics.

Supplementary material

42247_2019_62_MOESM1_ESM.pdf (178 kb)
ESM 1 (PDF 178 kb)

References

  1. 1.
    B. Simoncic, B. Tomsic, Structures of novel antimicrobial agents for textiles. A review. Text. Res. J.80(16), 1721–1737 (2010)CrossRefGoogle Scholar
  2. 2.
    R. Hirase, M. Hasegawa, M. Shirai, Conductive fibers based on poly(ethylene terephthalate)–polyaniline composites manufactured by electrochemical polymerization. J. Appl. Polym. Sci.87(7), 1073–1078 (2003)CrossRefGoogle Scholar
  3. 3.
    J. Molina, A.I. del Río, J. Bonastre, F. Cases, Electrochemical polymerisation of aniline on conducting textiles of polyester covered with polypyrrole/AQSA. Eur. Polym. J. 45(4), 1302–1315 (2009)CrossRefGoogle Scholar
  4. 4.
    A.C. Aksit, N. Onar, M.F. Ebeoglugil, I. Birlik, E. Celik, I. Ozdemir, Electromagnetic and electrical properties of coated cotton fabric with barium ferrite doped polyaniline film. J. Appl. Polym. Sci. 113(1), 358–366 (2009)CrossRefGoogle Scholar
  5. 5.
    S.K. Dhawan, N. Singh, S. Venkatachalam, Shielding effectiveness of conducting polyaniline coated fabrics at 101GHz. Synth. Met.125(3), 389–393 (2002)CrossRefGoogle Scholar
  6. 6.
    K.H. Hong, K.W. Oh, T.J. Kang, Polyaniline–nylon 6 composite fabric for ammonia gas sensor. J. Appl. Polym. Sci.92(1), 37–42 (2004)CrossRefGoogle Scholar
  7. 7.
    G. Tsekouras, S.F. Ralph, W.E. Price, G.G. Wallace, (2004). Gold recovery using inherently conducting polymer coated textiles. Fibers Polym. 5(1), 1–5 (2004)CrossRefGoogle Scholar
  8. 8.
    G. Kaur, R. Adhikari , P. Cass, M. Bown, P. Gunatillake, Electrically conductive polymers and composites for biomedical applications. RSC. Adv.5, 37553–37567 (2015)CrossRefGoogle Scholar
  9. 9.
    S.K. Dhawan, N. Singh, S. Venkatachalam, Shielding behaviour of conducting polymer-coated fabrics in X band, W-band and radio frequency range. Synth. Met.129(3), 261–267 (2002)CrossRefGoogle Scholar
  10. 10.
    R.V. Gregory, W.C. Kimbrell, H.H. Kuhn, Conductive textiles. Synth. Met.28(1–2), 823–835 (1989)CrossRefGoogle Scholar
  11. 11.
    G. Tsekouras, S.F. Ralph, W.E. Price, G.G. Wallace, Gold recovery using inherently conducting polymer coated textiles. Fibers Polym.5(1), 1–5 (2004)CrossRefGoogle Scholar
  12. 12.
    T. Hai Le, Y. Kim, H. Yoon, C. Polymers, Electrical and electrochemical properties of conducting polymers. Polymers (Basel),9(4), 150 (2017)CrossRefGoogle Scholar
  13. 13.
    Hassan, H. K., Atta, N. F., & Galal, A., Electropolymerization of aniline over chemically converted graphene-systematic study and effect of dopant. Int. J. Electrochem. Sci.7, 11161–11181 (2012)Google Scholar
  14. 14.
    A. Eftekhari, L. Li, Y. Yang, Polyaniline supercapacitors. J. Power Sources347, 86–107 (2017).  https://doi.org/10.1016/j.jpowsour.2017.02.054 CrossRefGoogle Scholar
  15. 15.
    D. Mawad, C. Mansfield, A. Lauto, F. Perbellini, G.W. Nelson, J. Tonkin, S.O. Bello, D.J. Carrad, A.P. Micolich, M.M. Mahat, J. Furman, D. Payne, A.R. Lyon, J. Justin Gooding, S.E. Harding, C.M. Terracciano, M.M. Stevens, A conducting polymer with enhanced electronic stability applied in cardiac models. Sci. Adv.2, 11, e1601007 (2016)CrossRefGoogle Scholar
  16. 16.
    L. Pan, G. Yu, D. Zhai, H.R. Lee, W. Zhao, N. Liu, H. Wang, B.C.-K. Tee, Y. Shi, Y. Cui, Z. Bao, Highly electroactive conducting polymer hydrogel. Proc. Nat. Acad. Sci. 109(24), 9287–9292 (2012).  https://doi.org/10.1073/pnas.1202636109 CrossRefGoogle Scholar
  17. 17.
    R. Julia, G.N. Marija, K. N. Michel, S. Simon, The antimicrobial action of polyaniline involves production of oxidative stress while functionalisation of polyaniline introduces additional mechanisms. PeerJ.6, e5135 (2018)Google Scholar
  18. 18.
    J. Robertson, M. Gizdavic-nikolaidis, M.K. Nieuwoudt, The antimicrobial action of polyaniline involves production of oxidative stress while functionalisation of polyaniline introduces additional mechanisms. PeerJ6, e5135 (2018).  https://doi.org/10.7717/peerj.5135 CrossRefGoogle Scholar
  19. 19.
    N. Shi, X. Guo, H. Jing, J. Gong, C. Sun, K. Yang, Antibacterial Effect of the Conducting Polyaniline. J. Mater. Sci. Technol. 2(22), 289–290 (2006)Google Scholar
  20. 20.
    D. Nicolas-Debarnot, F. Poncin-Epaillard, Polyaniline as a New Sensitive Layer for Gas Sensors. Anal. Chim. Acta 475(1-2), 1–15 (2003).  https://doi.org/10.1016/S0003-2670(02)01229-1 CrossRefGoogle Scholar
  21. 21.
    J. Molina, M.F. Esteves, J. Fernández, J. Bonastre, F. Cases, Polyaniline coated conducting fabrics . Chemical and electrochemical characterization. Eur. Polym. J.47(10), 2003–2015 (2015)Google Scholar
  22. 22.
    F. Kanwal, A. Gul, T. Jamil, Synthesis of acid doped conducting polyaniline. J. Chem. Soc. Pak. 29(6), 553–557 (2007)Google Scholar
  23. 23.
    K.M. Ziadan, W.T. Saadon, Study of the electrical characteristics of polyaniline prepeared by electrochemical polymerization. Energy Procedia19, 71–79 (2012).  https://doi.org/10.1016/j.egypro.2012.05.184 CrossRefGoogle Scholar
  24. 24.
    Nurzatul, S., Omar, I., Zainal Ariffin, Z., Akhir, R. M., Izzharif, M., Halim, A.,… Mahat, M. M. (2018). Electrically Conductive Polyester Fabrics Embedded Polyaniline. Int. J. Eng. Technol. 7, 524–528. Retrieved from www.sciencepubco.com/index.php/IJET
  25. 25.
    A. Mostafaei, A. Zolriasatein, Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Prog. Nat. Sci.: Mater. Int. 22(4), 273–280 (2012)CrossRefGoogle Scholar
  26. 26.
    Rehnby, W., Gustafsson, M., & Skrifvars, M., Coating of textile fabrics with conductive polymers for smart textile applications. Welcome to Ambience’08, (December), 100–103. Retrieved from http://bada.hb.se/bitstream/2320/3936/1/Ambience08.pdf#page=58 (2008)
  27. 27.
    A. Kaynak, R. Foitzik, Methods of Coating Textiles with Soluble Conducting Polymers. Res. J. Text. Appar.15(2), 107–113 (2011).  https://doi.org/10.1108/RJTA-15-02-2011-B012 CrossRefGoogle Scholar
  28. 28.
    R. Perumalraj, Electrical Surface Resistivity of Polyaniline Coated Woven Fabrics. J. Textile Sci. Eng.05(03) (2015).  https://doi.org/10.4172/2165-8064.1000196
  29. 29.
    The 411 on cotton vs polyester : The pros and cons. (2018, February 14). Retrieved from  https://doi.org/10.1016/j.actbio.2011.018
  30. 30.
    M.R. Gizdavic-Nikolaidis, J.R. Bennett, S. Swift, A.J. Easteal, M. Ambrose, Broad spectrum antimicrobial activity of functionalized polyanilines. Acta Biomater. 7(12), 4204–4209 (2011).  https://doi.org/10.1016/j.actbio.2011.07.018 CrossRefGoogle Scholar
  31. 31.
    M. Mashkour, M. Rahimnejad, M. Mashkour, Bacterial cellulose-polyaniline nanobiocomposite: A porous media hydrogel bioanode enhancing the performance of microbial fuel cell. J. Power Sources325, 322–328 (2016).  https://doi.org/10.1016/j.jpowsour.2016.06.063 CrossRefGoogle Scholar
  32. 32.
    N. Muthukumar, G. Thilagavathi, Development and characterization of electrically conductive polyaniline coated fabrics. Indian J. Chem. Technol.19(6), 434–441 (2012)Google Scholar

Copyright information

© Qatar University and Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Siti Nurzatul Ikma Omar
    • 1
  • Zaidah Zainal Ariffin
    • 2
    Email author
  • Azlan Zakaria
    • 1
  • Muhd Fauzi Safian
    • 3
  • Mohamed Izzharif Abd Halim
    • 3
  • Rosmamuhamadani Ramli
    • 1
  • Zarif Mohamed Sofian
    • 4
  • Meor Faisal Zulkifli
    • 5
  • Muhammad Faiz Aizamddin
    • 1
  • Mohd Muzamir Mahat
    • 1
    Email author
  1. 1.School of Physics and Material Studies, Faculty of Applied SciencesUniversiti Teknologi MARAShah AlamMalaysia
  2. 2.School of Biology, Faculty of Applied SciencesUniversiti Teknologi MARAShah AlamMalaysia
  3. 3.School of Chemistry and Environmental Studies, Faculty of Applied SciencesUniversiti Teknologi MARAShah AlamMalaysia
  4. 4.Department of PharmacyUniversity of MalayaKuala LumpurMalaysia
  5. 5.TNB Research Sdn BhdKajangMalaysia

Personalised recommendations