Effect of intercritical deformation on tensile performance of a low-carbon Si–Mn steel processed by quenching and bainitic partitioning

  • Ya-qiang Tian
  • Zhong-qian Cao
  • Wang Li
  • Hong-bo Pan
  • Xiao-ping Zheng
  • Jin-ying Song
  • Ying-li Wei
  • Lian-sheng ChenEmail author
Original Paper


The effect of intercritical deformation on retained austenite and tensile performance of a low-carbon Si–Mn steel in modified quenching and bainitic partitioning processes was evaluated. The results showed that the intercritical deformation can play a positive role in stabilizing and refining the retained austenite, and possessed promising potential in balancing tensile strength and ductility of multiphase high-strength steels. The experimental low-carbon Si–Mn steel exhibited multiphase configuration comprising polygonal ferrite, granular bainite and granular structure after two different modified quenching and bainitic partitioning processes, and the bainitic ferrite laths got refined by intercritical deformation. The volume fraction of retained austenite in film-like and blocky morphology was increased from 11.5% to 13.9% due to applied intercritical deformation, and the larger amount of retained austenite provided the sufficient transformation-induced plasticity effect and resulted in enhanced work hardening degree; in response, enhanced ultimate tensile strength 1260 MPa and fracture elongation 22.1% were obtained, leading to increased product of strength and elongation in value of 27.7 GPa% compared to 20.8 GPa% of undeformed structure.


Bainitic steel Intercritical deformation Retained austenite Instantaneous work hardening index Transformation-induced plasticity effect 



The authors are grateful to the National Natural Science Foundation of China (Nos. 51574107 and U1860105), Natural Science Foundation of Hebei Province (No. E2017209048), and Science and Technology Research Project for Institutions of Higher Learning of Hebei Province (No. ZD2019064) for grant and financial support.


  1. [1]
    J.W. Zhao, Z.Y. Jiang, Prog. Mater. Sci. 94 (2018) 174–242.CrossRefGoogle Scholar
  2. [2]
    H.K.D.H. Bhadeshia, Sci. Technol. Adv. Mater. 14 (2013) 014202.CrossRefGoogle Scholar
  3. [3]
    P. Jacques, F. Delannay, X. Cornet, Ph. Harlet, J. Ladriere, Metall. Mater. Trans. A 29 (1998) 2383–2393.CrossRefGoogle Scholar
  4. [4]
    M.C. Mcgrath, D.C. Van Aken, N.I. Medvedeva, J.E. Medvedeva, Metall. Mater. Trans. A 44 (2013) 4634–4643.CrossRefGoogle Scholar
  5. [5]
    J.G. Speer, D.K. Matlock, B.C.D. Cooman, J.G. Schroth, Acta Mater. 51 (2003) 2611–2622.CrossRefGoogle Scholar
  6. [6]
    A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, E. De Moor, Acta Mater. 56 (2008) 16–22.CrossRefGoogle Scholar
  7. [7]
    J.F. Wang, K.J. Yao, A.L. Korich, S.G. Li, S.G. Ma, H.J. Ploehn, P.M. Iovien, C.P. Wang, F.X. Chu, C.B. Tang, J. Polym. Sci. A 49 (2011) 3728–3738.CrossRefGoogle Scholar
  8. [8]
    E.J. Seo, L. Cho, Y. Estrin, B.C.D. Cooman, Acta Mater. 113 (2016) 124–139.CrossRefGoogle Scholar
  9. [9]
    C. Garciamateo, F.G. Caballero, H.K.D.H. Bhadeshia, ISIJ Int. 43 (2003) 1821–1825.CrossRefGoogle Scholar
  10. [10]
    F.G. Caballero, H.K.D.H. Bhadeshia, Curr. Opin. Solid State Mater. Sci. 8 (2004) 251–257.CrossRefGoogle Scholar
  11. [11]
    Y. Toji, H. Matsuda, M. Herbig, P.P. Cjoi, D. Raabe, Acta Mater. 65 (2014) 215–228.CrossRefGoogle Scholar
  12. [12]
    J.G. Speer, D.V. Edmonds, F.C. Rizzo, D.K. Matlock, Curr. Opin. Solid State Mater. Sci. 8 (2004) 219–237.CrossRefGoogle Scholar
  13. [13]
    H.P. Liu, X.J. Jin, H. Dong, J. Shi, Mater. Charact. 62 (2011) 223–227.CrossRefGoogle Scholar
  14. [14]
    C.Y. Wang, Y. Chang, J. Yang, K. Zhao, H. Dong, Acta. Metall. Sin. 51 (2015) 913–919.Google Scholar
  15. [15]
    M. Xu, Y.G. Yang, J.Y. Chen, D. Tang, H.T. Jiang, Z.L. Mi, J. Iron Steel Res. Int. 24 (2017) 1125–1130.CrossRefGoogle Scholar
  16. [16]
    Y.Q. Tian, M.S. Zhang, R. Li, Y.L. Wei, J.Y. Song, X.P. Zheng, L.S. Chen, Trans. Mater. Heat Treat. 37 (2016) 161–167.Google Scholar
  17. [17]
    K. Sugimoto, N. Usui, M. Kobayashi, S. Hashimoto, ISIJ Int. 32 (1992) 1311–1318.CrossRefGoogle Scholar
  18. [18]
    K. Sugimoto, T. Iida, J. Sakaguchi, T. Kashima, ISIJ Int. 40 (2000) 902–908.CrossRefGoogle Scholar
  19. [19]
    V. Biss, R.L. Cryderman, Metall. Mater. Trans. B 2 (1971) 2267–2276.CrossRefGoogle Scholar
  20. [20]
    O.A. Zambrano, J. Mater. Sci. 53 (2018) 14003–14062.CrossRefGoogle Scholar
  21. [21]
    H.P. Liu, H. Sun, B. Liu, D.Z. Li, F. Sun, X.J. Jin, Mater. Des. 83 (2015) 760–767.CrossRefGoogle Scholar
  22. [22]
    S. Martin, S. Wolf, U. Martin, L. Krüger, D. Rafaja, Metall. Mater. Trans. A 47 (2016) 49–58.CrossRefGoogle Scholar
  23. [23]
    Z.P. Hu, Y.B. Xu, X.D. Tan, J. Northeast. Univ. Nat. Sci. 37 (2016) 179–183.Google Scholar
  24. [24]
    L.S. Chen, Y. Li, M.S. Zhang, Y.Q. Tian, X.P. Zheng, Y. Xu, S.H. Zhang, Acta. Metall. Sin. 53 (2017) 1418–1426.Google Scholar
  25. [25]
    S.S. Zhu, Z.Z. Wang, X.Y. Mao, B.S. Zhang, Q.S. Dong, Z.Y. Bao, Mater. Rep. 30 (2016) 122–126.Google Scholar
  26. [26]
    S. Sun, M. Pugh, Mater. Sci. Eng. A 276 (2000) 167–174.CrossRefGoogle Scholar
  27. [27]
    M.J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W.G. Sloof, J. Sietsma, Acta Mater. 59 (2011) 6059–6068.CrossRefGoogle Scholar
  28. [28]
    R. Zhang, W.Q. Cao, Z.J. Peng, J. Shi, H. Dong, C.X. Huang, Mater. Sci. Eng. A 583 (2013) 84–88.CrossRefGoogle Scholar
  29. [29]
    H. Kitahara, N. Tsuji, Y. Minamino, Mater. Sci. Eng. A 438–440 (2006) 233–236.CrossRefGoogle Scholar
  30. [30]
    C.H. Song, H. Yu, L.L. Li, T. Zhou, J. Lu, X.H. Liu, Mater. Sci. Eng. A 670 (2016) 326–334.CrossRefGoogle Scholar
  31. [31]
    D.D. Knijf, R. Petrov, C. Föjer, L.A.I. Kestens, Mater. Sci. Eng. A 615 (2014) 107–115.CrossRefGoogle Scholar
  32. [32]
    Z.C. Li, R.D.K. Misra, Z.H. Cai, H.X. Li, H. Ding, Mater. Sci. Eng. A 673 (2016) 63–72.CrossRefGoogle Scholar
  33. [33]
    Z.J. Xie, C.J. Shang, W.H. Zhou, B. Wu, Acta. Metall. Sin. 52 (2016) 224–232.Google Scholar
  34. [34]
    Z.J. Xie, S.F. Yuan, W.H. Zhou, J.R. Yang, H. Gao, C.J. Shang, Mater. Des. 59 (2014) 193–198.CrossRefGoogle Scholar
  35. [35]
    J. Chiang, B. Lawrence, J.D. Boyd, A.K. Pilkey, Mater. Sci. Eng. A 528 (2011) 4516–4521.CrossRefGoogle Scholar
  36. [36]
    J.W. Ma, Q. Lu, L. Sun, Y. Shen, Metall. Mater. Trans. A 49 (2018) 4404–4408.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2020

Authors and Affiliations

  • Ya-qiang Tian
    • 1
  • Zhong-qian Cao
    • 1
  • Wang Li
    • 1
  • Hong-bo Pan
    • 2
  • Xiao-ping Zheng
    • 1
  • Jin-ying Song
    • 1
  • Ying-li Wei
    • 1
  • Lian-sheng Chen
    • 1
    Email author
  1. 1.Key Laboratory of the Ministry of Education for Modern Metallurgy TechnologyNorth China University of Science and TechnologyTangshanChina
  2. 2.Key Laboratory of Metallurgical Emission Reduction and Resources Recycling of Ministry of EducationAnhui University of TechnologyMa’anshanChina

Personalised recommendations