Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of metallic microstructures on fatigue fracture of Q345 steel

  • 6 Accesses

Abstract

Effects of high-frequency cyclic loading on the banded ferrite–pearlite steel were analyzed through crack initiation and propagation. Interfaces of ferrite and pearlite colony with a small angle deviation from the loading axis were verified to be the most potential sites to fabricate the microcracks caused by the high strain gradient. The initial crack extension inside ferrite grain was driven by shear stress in model II along the direction with a 45° angle to the loading axis. Banded pearlite colony and the high-angle grain boundaries were considered as the dominant factors that promote the fatigue resistance of the material through arousing crack deflection in short crack propagation range and crack branching in long crack propagation range to reduce the crack propagation driving force in the crack tip. PSN curves were used to quantify the dispersion of fatigue lifetimes and evaluate the effect of elevated volume content of pearlite colony on the fatigue performance of the material.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. [1]

    D. Croccolo, M. De Agostinis, L. Ceschini, A. Morri, A. Marconi, Fatigue Fract. Eng. Mater. Struct. 36 (2013) 689–698.

  2. [2]

    Z.Y. Huang, D. Wagner, Q.Y. Wang, M.K. Khan, J.L. Chaboche, Mater. Sci. Eng. A 654 (2016) 77–84.

  3. [3]

    S.P. Zhu, H.Z. Huang, Fatigue Fract. Eng. Mater. Struct. 33 (2010) 227–237.

  4. [4]

    J. Toribio, B. González, J.C. Matos, Materials 8 (2015) 7439–7446.

  5. [5]

    A.A. Korda, Y. Mutoh, Y. Miyashita, T. Sadasue, S.L. Mannan, Scripta Mater. 54 (2006) 1835–1840.

  6. [6]

    C.C. Tasan, M. Dieh, D. Yan, M. Bechtold, F. Roters, L. Schemmann, K. Tsuzaki, Annu. Rev. Mater. Res. 45 (2015) 391–431.

  7. [7]

    C.C. Tasan, J.P.M. Hoefnagels, M.G.D. Geers, Scripta Mater. 62 (2010) 835–838.

  8. [8]

    X. Zhang, Y. Wang, J. Yang, Z. Qiao, C. Ren, C. Chen, Opt. Laser Eng. 85 (2016) 24–28.

  9. [9]

    L. Wang, Z. Wang, J. Zhao, Int. J. Fatigue 80 (2015) 349–356.

  10. [10]

    N. Narasaiah, K.K. Ray, Mater. Sci. Eng. A 392 (2005) 269–277.

  11. [11]

    A.A. Korda, Y. Mutoh, Y. Miyashita, T. Sadasue, Mater. Sci. Eng. A 428 (2006) 262–269.

  12. [12]

    M. Guan, H. Yu, Mater. Sci. Eng. A 559 (2013) 875–881.

  13. [13]

    W. Hui, Y. Zhang, X. Zhao, N. Xiao, F. Hu, Int. J. Fatigue 91 (2016) 232–241.

  14. [14]

    O.H. Basquin, ASTM 10 (1910) 625–630.

  15. [15]

    T. Zhai, A.J. Wilkinson, J.W. Martin, Acta Mater. 48 (2000) 4917–4927.

  16. [16]

    S.P. Zhu, S. Foletti, S. Beretta, Int. J. Fatigue 103 (2017) 371–385.

  17. [17]

    S.P. Zhu, H.Z. Huang, W. Peng, H.K. Wang, S. Mahadevan, Reliab. Eng. Syst. Safe. 146 (2016) 1–12.

  18. [18]

    D. Raabe, M. Sachtleber, Z. Zhao, F. Roters, S. Zaefferer, Acta Mater. 49 (2001) 3433–3441.

  19. [19]

    Q.Y. Wang, C. Bathias, N. Kawagoishi, Q. Chen, Int. J. Fatigue 24 (2002) 1269–1274.

  20. [20]

    J. Ma, B. Zhang, D. Xu, E.H. Han, W. Ke, Int. J. Fatigue 32 (2010) 1116–1125.

  21. [21]

    H. Deng, W. Li, T. Sakai, Z. Sun, Materials 8 (2015) 8338–8354.

  22. [22]

    Z. Li, D. Wu, W. Lü, J. Iron Steel Res. Int. 19 (2012) No. 11, 64–70.

Download references

Acknowledgements

The authors would gratefully acknowledge the financial support by the National Natural Science Foundation of China (Nos. 11832007, 11772209 and 11802042). Han-qing Liu thanks for the financial support from the China Scholarship Council (CSC, No. 201806240228).

Author information

Correspondence to Zhi-yong Huang or Qing-yuan Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Wang, C., Zhang, H. et al. Effects of metallic microstructures on fatigue fracture of Q345 steel. J. Iron Steel Res. Int. (2020). https://doi.org/10.1007/s42243-019-00347-2

Download citation

Keywords

  • Ferrite–pearlite steel
  • High-cycle fatigue
  • Crack propagation
  • Crack branching
  • High-angle grain boundary
  • P–S–N curve