Influence of elemental composition in environmental impacts of steel

  • E. BatuecasEmail author
  • C. Mayo
  • R. Díaz
  • F. J. Pérez
Original Paper


The environmental behavior of four steels was analyzed. In the operation phase of concentrating solar power plants, steels withstand high temperature because of its contact with molten salts. Hence, choosing the steel type for the molten salt tanks remains a great challenge. In the cold tank, carbon steel is usually used although an approach with low chromium content steel is being studied for these applications. Likewise, in high temperature applications, such as hot store tank, austenitic stainless steel is the most frequent choice. However, ferritic steel is being considered as a promising material in these applications. As many researchers studied the steel technical properties without considering their environmental damages, this work aimed to introduce the environmental aspects into the material choice by using the life cycle assessment technique. On one hand, the results showed the environmental adequacy of carbon steel against low chromium content steel. On the other hand, the results obtained in those steels suitable in high temperature application revealed significant environmental benefits from the ferritic steel instead of the austenitic steel.


Renewable energy Concentrating solar power Life cycle assessment Molten salt Ferritic steel Austenitic steel 



This research started at Complutense University. The authors very much appreciate the support by the Surface Engineering and Nanostructured Materials Research Group.

Supplementary material

42243_2019_339_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 25 kb)


  1. [1]
    European Commission, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, A roadmap for moving to a competitive low carbon economy in 2050, 2011. (Accessed: 2019-01-26).
  2. [2]
    International Energy Agency, Medium term market report 2015 market analysis and forecasts to 2020, 2015. (Accessed: 2018-07-10).
  3. [3]
    A. Gil, M. Medrano, I. Martorell, A. Lázaro, P. Dolado, B. Zalba, L.F. Cabeza, Renew. Sustain. Energy Rev. 14 (2010) 31–55.CrossRefGoogle Scholar
  4. [4]
    M. Liu, N.H.S. Tay, S. Bell, M. Belusko, R. Jacob, G. Will, W. Saman, F. Bruno, Renew. Sustain. Energy Rev. 53 (2016) 1411–1432.CrossRefGoogle Scholar
  5. [5]
    O. Badran, R. Mamlook, E. Abdulhadi, Clean Techn. Environ. Policy 14 (2012) 357–367.Google Scholar
  6. [6]
    L.F. Cabeza, E. Galindo, C. Prieto, C. Barreneche, A.I. Fernández, Renew. Energy 83 (2015) 820–827.CrossRefGoogle Scholar
  7. [7]
    A. Giglio, A. Lanzini, P. Leone, M.M. Rodríguez García, E. Zarza Moya, Renew. Sustain. Energy Rev. 74 (2017) 453–473.Google Scholar
  8. [8]
    X.L. Wei, Q. Peng, J. Ding, X.X. Yang, J.P. Yang, B. Long, Appl. Therm. Eng. 54 (2013) 140–144.CrossRefGoogle Scholar
  9. [9]
    N.B. Desai, S. Bandyopadhyay, Clean Techn. Environ. Policy 19 (2017) 9–35.Google Scholar
  10. [10]
    C. Parrado, A. Marzo, E. Fuentealba, A.G. Fernández, Renew. Sustain. Energy Rev. 57 (2016) 505–514.CrossRefGoogle Scholar
  11. [11]
    R. Serrano-López, J. Fradera, S. Cuesta-López, Chem. Eng. Process. Process Intensif. 73 (2013) 87–102.CrossRefGoogle Scholar
  12. [12]
    J. Pacio, T. Wetzel, Sol. Energy 93 (2013) 11–22.CrossRefGoogle Scholar
  13. [13]
    K. Vignarooban, X. Xu, A. Arvay, K. Hsu, A.M. Kannan, Appl. Energy 146 (2015) 383–396.CrossRefGoogle Scholar
  14. [14]
    E. Zarza Moya, in: Advances in Concentrating Solar Thermal Research and Technology, Woodhead Publishing Series in Energy, 2017, pp. 75–106. Scholar
  15. [15]
    V. Encinas-Sánchez, E. Batuecas, A. Macías-García, C. Mayo, R. Díaz, F.J. Pérez, Sol. Energy 176 (2018) 688–697.CrossRefGoogle Scholar
  16. [16]
    Y. Tian, C.Y. Zhao, Appl. Energy 104 (2013) 538–553.CrossRefGoogle Scholar
  17. [17]
    D.J. Abson, in: Power Plant Life Management and Performance Improvement, Woodhead Publishing Series in Energy, 2011, pp. 635–665. Scholar
  18. [18]
    R.W. Bradshaw, W.M. Clift, Effect of chloride content of molten nitrate salt on corrosion of A516 carbon steel, 2010, Sandia report SAND2010-7594. (Accessed: 2018-06-05).
  19. [19]
    P.F. Tortorelli, P.S. Bishop, J.R. DiStefano, Selection of corrosion-resistant materials for use in molten nitrate salts, Oak Ridge National Lab, 1989. (Accessed: 2018-08-21).
  20. [20]
    J. Hernández-Moro, J.M. Martínez-Duart, Energy Policy 41 (2012) 184–192.CrossRefGoogle Scholar
  21. [21]
    G. Cao, S.J. Weber, S.O. Martin, M.H. Anderson, K. Sridharan, T.R. Allen, Nucl. Eng. Des. 251 (2012) 78–83.CrossRefGoogle Scholar
  22. [22]
    R. Moore, M. Vernon, C.K. Ho, N.P. Siegel, G.J. Kolb, Design considerations for concentrating solar power tower systems employing molten salt, 2010, Sandia Report SAND2010-6978. (Accessed: 2018-07-06).
  23. [23]
    A.G. Fernández, H. Galleguillos, E. Fuentealba, F.J. Pérez, Sol. Energy Mater. Sol. Cells 141 (2015) 7–13.CrossRefGoogle Scholar
  24. [24]
    S.H. Goods, R.W. Bradshaw, J. Mater. Eng. Perform. 13 (2004) 78–87.CrossRefGoogle Scholar
  25. [25]
    A.M. Kruizenga, D.D. Gill, M. LaFord, G. McConohy, Corrosion of high temperature alloys in solar salt at 400, 500 and 680°C, 2013, Sandia Report 2013-8256. (Accessed: 2018-07-30).
  26. [26]
    A.B. Zavoico, Solar power tower design basis document, Revision 0, 2001, Sandia Report 2001-2100. (Accessed: 2018-07-15).
  27. [27]
    A.G. Fernández, A. Rey, I. Lasanta, S. Mato, M.P. Brady, F.J. Pérez, Mater. Corros. 65 (2014) 267–275.CrossRefGoogle Scholar
  28. [28]
    J.J. Cai, Z.W. Lu, Q. Yue, J. Iron Steel Res. Int. 15 (2008) No. 5, 37–41.CrossRefGoogle Scholar
  29. [29]
    S. Eloneva, E.M. Puheloinen, J. Kanerva, A. Ekroos, R. Zevenhoven, C.J. Fogelholm, J. Clean. Prod. 18 (2010) 1833–1839.CrossRefGoogle Scholar
  30. [30]
    G. Heath, J. Burkhardt, C. Turchi, Life cycle environmental impacts resulting from the manufacture of the heliostat field for a reference power tower design in the United States, 2012, National Renewable Energy Laboratory (NREL) No. NREL/CP-6A20-56452. (Accessed: 2018-07-01).
  31. [31]
    Y. Lalau, X. Py, A. Meffre, R. Olives, Waste Biomass Valor. 7 (2016) 1509–1519.CrossRefGoogle Scholar
  32. [32]
    G. San Miguel, B. Corona, Renew. Energy 66 (2014) 580–587.Google Scholar
  33. [33]
    M.B. Whitaker, G.A. Heath, J.J. Burkhardt III, C.S Turchi, Environ. Sci. Technol. 47 (2013) 5896–5903.CrossRefGoogle Scholar
  34. [34]
    A. Jonsson, T. Bjorklund, A.M. Tillman, Int. J. Life Cycle Assess. 3 (1998) 216–224.CrossRefGoogle Scholar
  35. [35]
    S. Xing, Z. Xu, G. Jun, Energy Build. 40 (2008) 1188–1193.CrossRefGoogle Scholar
  36. [36]
    D. Burchart-Korol, J. Clean. Prod. 54 (2013) 235–243.CrossRefGoogle Scholar
  37. [37]
    D. Burchart-Korol, Metalurgija-Zagreb 50 (2011) 205–208.Google Scholar
  38. [38]
    M. Yellishetty, G.M. Mudd, P.G. Ranjith, A. Tharumarajah, Environ. Sci. Policy 14 (2011) 650–663.CrossRefGoogle Scholar
  39. [39]
    E. Batuecas, C. Mayo, R. Díaz, F.J. Pérez, Sol. Energy Mater. Sol. Cells 171 (2017) 91–97.CrossRefGoogle Scholar
  40. [40]
    C. Mayo, E. Batuecas, R. Díaz, F.J. Pérez. Sol. Energy 162 (2018) 178–186.CrossRefGoogle Scholar
  41. [41]
    ISO 14040, Environmental Management – Life Cycle Assessment - Principles and Framework, Geneva, Switzerland, 2006.Google Scholar
  42. [42]
    ISO 14044, Environmental Management – Life Cycle Assessment – Requirements and Guidelines, Geneva, Switzerland, 2006.Google Scholar
  43. [43]
    M. Baitz, C. Bayliss, A. Russell-Vaccari, Int. J. Life Cycle Assess. 21 (2016) 1541–1542.CrossRefGoogle Scholar
  44. [44]
    M. Goedkoop, M. Oele, J. Leijting, T. Ponsioen, E. Meijer, Introduction to LCA with SimaPro, 2016. (Accessed: 2018-07-10).
  45. [45]
    I.T. Herrmann, A. Moltesen, J. Clean. Prod. 86 (2015) 163–169.CrossRefGoogle Scholar
  46. [46]
    R. Frischknecht, G. Rebitzer, J. Clean. Prod. 13 (2005) 1337–1343.CrossRefGoogle Scholar
  47. [47]
  48. [48]
    H.A. Udo de Haes, G. Finnveden, M. Goedkoop, E. Hertwich, P. Hofstetter, W. Klöpffer, W. Krewitt, E. Lindeijer, Life cycle impact assessment: striving towards best practice, SETAC Press Proceedings, 2002.Google Scholar
  49. [49]
    N.P.J. Dissanayake, J. Summerscales, S.M. Grove, M.M. Singh, J. Biobased Mater. Bioenergy 3 (2009) 245–248.CrossRefGoogle Scholar
  50. [50]
    M. Huijbregts, G. Huppes, A. Koning, LCA normalization data for the Netherlands 1997/1998, Western Europe 1995 and the World 1990 and 1995, RIZA Lelystad and CML, Leiden University, Leiden, The Netherlands. (Accessed: 2018-08-10).
  51. [51]
    A.W. Sleeswijk, L.F.C.M. van Oers, J.B. Guinée, J. Struijs, M.A.J. Huijbregts, Sci. Total Environ. 390 (2008) 227–240.CrossRefGoogle Scholar
  52. [52]
    M. Pizzol, A. Laurent, S. Sala, B. Weidema, F. Verones, C. Koffler, Int. J. Life Cycle Assess. 22 (2017) 853–866.CrossRefGoogle Scholar
  53. [53]
    W.P. Schmidt, J. Sullivan, Int. J. Life Cycle Assess. 7 (2002) 250.CrossRefGoogle Scholar
  54. [54]
    Joint Research Centre Institute for Environment and Sustainability, ILCD handbook, European Union, 2011. (Accessed: 2018-07-11).
  55. [55]
    H. Gabathuler, Int. J. Life Cycle Assess. 11 (2006) 127–132.CrossRefGoogle Scholar
  56. [56]
    J.B. Guinée, Int. J. Life Cycle Assess. 7 (2002) 311–313.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  1. 1.Thermal and Fluid Engineering DepartmentCarlos III University of MadridLeganés, MadridSpain
  2. 2.Chemical and Materials Engineering DepartmentComplutense University of MadridMadridSpain
  3. 3.Technical Sciences and EngineeringUDIMA UniversityCollado Villalba, MadridSpain

Personalised recommendations