Influence of annealing on microstructure and hydrogen storage properties of V48Fe12Ti15Cr25 alloy

  • Long Luo
  • Xuan Bian
  • Wen-yuan WuEmail author
  • Ze-ming Yuan
  • Yong-zhi Li
  • Ting-ting Zhai
  • Feng Hu
Original Paper


V48Fe12Ti15Cr25 alloy was prepared using vacuum arc melting and was subsequently annealed for 10 h at 1273 K. The effects of annealing on the hydrogen storage properties and microstructure of the V48Fe12Ti15Cr25 alloys were investigated. The results indicated that the alloy consisted of main body-centered cubic, Ti-rich, and TiFe phases. After annealing, the kinetic properties of the alloy were improved but its hydrogen storage capacity was slightly reduced. The kinetic mechanisms of the hydrogen absorption and desorption of the alloys were studied. The dehydrogenation enthalpy of the alloy was decreased by 2.57 kJ/mol after annealing. Differential scanning calorimetry indicated that the hydride decomposition temperature of the annealed alloy was decreased. The hydrogen desorption activation energies of the as-cast and annealed alloys were calculated to be 79.41 and 71.25 kJ/mol, respectively. The results illustrated that annealing was a beneficial method of improving the kinetic and thermodynamic properties of the hydrogen absorption/desorption of the alloy.


V-based solid solution alloy Annealing Microstructure Hydrogen storage Kinetic mechanism 



This study was funded by the National Natural Science Foundation of China (Grant No. 51901105) and Natural Science Foundation of Inner Mongolia, China (Grant Nos. 2018LH05010, 2019BS05005, and 2017BS0507).


  1. [1]
    J.L. Gao, Y. Qi, Y.Q. Li, H.W. Shang, D.L. Zhao, Y.H. Zhang, J. Iron Steel Res. Int. 24 (2017) 198–205.CrossRefGoogle Scholar
  2. [2]
    Z.M. Yuan, T. Yang, W.G. Bu, H.W. Shang, Y. Qi, Y.H. Zhang, Int. J. Hydrogen Energy 41 (2016) 5994–6003.CrossRefGoogle Scholar
  3. [3]
    H.C. Lin, K.M. Lin, K.C. Wu, H.H. Hsiung, H.K. Tsai, Int. J. Hydrogen Energy 32 (2007) 4966–4972.CrossRefGoogle Scholar
  4. [4]
    D.C. Feng, H. Sun, Z.H. Hou, D.L. Zhao, X.T. Wang, Y.H. Zhang, J. Iron Steel Res. Int. 24 (2017) 50–58.CrossRefGoogle Scholar
  5. [5]
    D.C. Feng, H. Sun, X.T. Wang, Y.H. Zhang, J. Iron Steel Res. Int. 25 (2018) 746–754.CrossRefGoogle Scholar
  6. [6]
    M. Anik, F. Karanfil, N. Küçükdeveci, Int. J. Hydrogen Energy 37 (2012) 299–308.CrossRefGoogle Scholar
  7. [7]
    Y.H. Zhang, Z.C. Jia, Z.M. Yuan, T. Yang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 22 (2015) 757–770.CrossRefGoogle Scholar
  8. [8]
    M.V. Lototsky, V.A. Yartys, I.Y. Zavaliy, J. Alloy. Compd. 404 (2005) 421–426.CrossRefGoogle Scholar
  9. [9]
    X.P. Song, P. Pei, P.L. Zhang, G.L. Chen, J. Alloy. Compd. 455 (2008) 392–397.CrossRefGoogle Scholar
  10. [10]
    X.B. Yu, Z Wu, B.J. Xia, T.Z. Huang, J.Z. Chen, Z.S. Wang, N.X. Xu, J. Mater. Res. 18 (2003) 2533–2536.CrossRefGoogle Scholar
  11. [11]
    X.B. Yu, J.Z. Chen, Z. Wu, B.J. Xia, N.X. Xu, Int. J. Hydrogen Energy 29 (2004) 1377–1381.CrossRefGoogle Scholar
  12. [12]
    X.B. Yu, Z.X. Yang, S.L. Feng, Z. Wu, N.X. Xu, Int. J. Hydrogen Energy 31 (2006) 1176–1181.CrossRefGoogle Scholar
  13. [13]
    X.B. Yu, S.L. Feng, Z. Wu, B.J. Xia, N.X. Xu, J. Alloy. Compd. 393 (2005) 129–134.CrossRefGoogle Scholar
  14. [14]
    X.B. Yu, Z.W. Tang, D.L. Sun, L.Z Ouyang, M. Zhu, Prog. Mater. Sci. 88 (2017) 1–48.CrossRefGoogle Scholar
  15. [15]
    T. Tamura, Y. Tominaga, K. Matsumoto, T. Fuda, T. Kuriiwa, A. Kamegawa, H. Takamura, M. Okada, J. Alloy. Compd. 330 (2002) 522–525.CrossRefGoogle Scholar
  16. [16]
    S.W. Cho, C.S. Han, C.N. Park, E. Akiba, J. Alloy. Compd. 289 (1999) 244–250.CrossRefGoogle Scholar
  17. [17]
    K. Asano, S. Hayashi, Y. Nakamura, E. Akiba, J. Alloy. Compd. 524 (2012) 63–68.CrossRefGoogle Scholar
  18. [18]
    K. Asano, S. Hayashi, Y. Nakamura, Acta Mater. 83 (2015) 479–487.CrossRefGoogle Scholar
  19. [19]
    K. Asano, S. Hayashi, Y. Nakamura, Int. J. Hydrogen Energy 41 (2016) 6369–6375.CrossRefGoogle Scholar
  20. [20]
    H. Kim, K. Sakaki, I. Saita, H. Enoki, K. Noguchi, A. Machida, T. Watanuki, Y. Nakamura, Int. J. Hydrogen Energy 39 (2014) 10546–10551.CrossRefGoogle Scholar
  21. [21]
    G. Mazzolai, Int. J. Hydrogen Energy 33 (2008) 7116–7121.CrossRefGoogle Scholar
  22. [22]
    S.W. Cho, C.N. Park, J.H. Yoo, J. Choi, J.S. Park, C.Y. Suh, G. Shim, J. Alloy Compd. 403 (2005) 262–266.CrossRefGoogle Scholar
  23. [23]
    T. Kabutomori, H. Takeda, Y. Wakisaka, K. Ohnishi, J. Alloy. Compd. 231 (1995) 528–532.CrossRefGoogle Scholar
  24. [24]
    U. Ulmer, K. Asano, A. Patyk, H. Enoki, Y. Nakamur, A. Pohl, R. Dittmeyer, M. Fichtner, J. Alloy. Compd. 648 (2015) 1024–1030.CrossRefGoogle Scholar
  25. [25]
    X.B. Yu, Z. Wu, F. Li, B.J. Xia, N.X. Xu, Appl. Phys. Lett. 84 (2004) 3199–3201.CrossRefGoogle Scholar
  26. [26]
    X.B. Yu, Z. Wu, B.J. Xia, N.X. Xu, J. Alloy. Compd. 372 (2004) 272–277.CrossRefGoogle Scholar
  27. [27]
    Y.G. Yan, Y.H. Chen, C.L. Wu, M.D. Tao, H. Liang, J. Power Sources 164 (2007) 799–802.CrossRefGoogle Scholar
  28. [28]
    J. Mi, F. LÜ, X.P. Liu, L.J. Jiang, Z.N. Li, S.M. Wang, J. Rare Earth 28 (2010) 781–784.CrossRefGoogle Scholar
  29. [29]
    J. Matsuda, E. Akiba, J. Alloy. Compd. 581 (2013) 369–372.CrossRefGoogle Scholar
  30. [30]
    Z.W. Chen, X.Z. Xiao, L.X. Chen, X.L. Fan, L.X. Liu, S.Q. Li, H.W. Ge, Q.D. Wang, Int. J. Hydrogen Energy 38 (2013) 12803–12810.CrossRefGoogle Scholar
  31. [31]
    Y.H. Zhang, Z.H. Hou, Y. Cai, H.W. Shang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 24 (2017) 296–305.CrossRefGoogle Scholar
  32. [32]
    S. Suwarno, J.K. Solberg, J.P. Maehlen, B. Krogh, V.A. Yartys, Int. J. Hydrogen Energy 37 (2012) 7624–7628.CrossRefGoogle Scholar
  33. [33]
    A. Kamegawa, T. Tamura, H. Takamura, M. Okada, J. Alloy. Compd. 356–357 (2003) 447–451.CrossRefGoogle Scholar
  34. [34]
    X.P. Liu, L.J. Jiang, Z.N. Li, Z. Huang, S.M. Wang, J. Alloy. Compd. 471 (2009) L36–L38.CrossRefGoogle Scholar
  35. [35]
    M. Okada, T. Kuriiwa, T. Tamura, H. Takamura, A. Kamegawa, J. Alloy. Compd. 330 (2002) 511–516.CrossRefGoogle Scholar
  36. [36]
    S. Cho, G. Shim, G. Cho, C. Park, J. Yoo, J. Choi, J. Alloy. Compd. 430 (2007) 136–141.CrossRefGoogle Scholar
  37. [37]
    M. Tsukahara, Mater. Trans. 52 (2011) 68–72.CrossRefGoogle Scholar
  38. [38]
    Z.M. Hang, X.Z. Xiao, S.Q. Li, H.W. Ge, C.P. Chen, L.X. Chen, J. Alloy. Compd. 529 (2012) 128–133.CrossRefGoogle Scholar
  39. [39]
    Y.F. Zhu, H.G. Pan, M.X. Gao, Y.F. Liu, Q.D. Wang, J. Alloy. Compd. 348 (2003) 301–308.CrossRefGoogle Scholar
  40. [40]
    M.H. Rong, F. Wang, J. Wang, Z.M. Wang, H.Y. Zhou, Prog. Nat. Sci. 27 (2017) 543–549.CrossRefGoogle Scholar
  41. [41]
    E. Akiba, H. Iba, Intermetallics 6 (1998) 461–470.CrossRefGoogle Scholar
  42. [42]
    Y.G. Yan, Y.G. Chen, X.X. Zhou, H. Liang, C.L. Wu, M.D. Tao, J. Alloy. Compd. 453 (2008) 428–432.CrossRefGoogle Scholar
  43. [43]
    Y.G. Yan, Y.G. Chen, H. Liang, X.X. Zhou, C.L. Wu, M.D. Tao, L.J. Pang, J. Alloy. Compd. 454 (2008) 427–431.CrossRefGoogle Scholar
  44. [44]
    J.Y. Wang, R.R. Jeng, J.K. Nieh, S.Y. Lee, S.L. Lee, H.Y. Bor, Int. J. Hydrogen Energy 32 (2007) 3959–3964.CrossRefGoogle Scholar
  45. [45]
    Y. Nakamura, K. Oikawa, T. Kamiyama, E. Akiba, J. Alloy. Comp. 316 (2001) 284–289.CrossRefGoogle Scholar
  46. [46]
    N. Endo, I. Saita, Y. Nakamura, H. Saitoh, A. Machida, Int. J. Hydrogen Energy 40 (2015) 3283–3287.CrossRefGoogle Scholar
  47. [47]
    H.Y. Leng, Z.G. Yu, J. Yin, Q. Li, Z. Wu, K.C. Chou, Int. J. Hydrogen Energy 42 (2017) 23731–23736.CrossRefGoogle Scholar
  48. [48]
    P. Lv, J. Huot, Energy 138 (2017) 375–382.CrossRefGoogle Scholar
  49. [49]
    Y.P. Pang, Q. Li, Int. J. Hydrogen Energy 41 (2016) 18072–18087.CrossRefGoogle Scholar
  50. [50]
    B.K. Singh, S.W. Cho, K.S. Bartwal, Int. J. Hydrogen Energy 39 (2014) 8351–8356.CrossRefGoogle Scholar
  51. [51]
    P. Pei, X.P. Song, J. Liu, G.L. Chen, X.B. Qin, B.Y. Wang, Int. J. Hydrogen Energy 34 (2009) 8094–8100.CrossRefGoogle Scholar
  52. [52]
    H.Y. Zhou, F. Wang, J. Wang, Z.M. Wang, Q.R. Yao, J.Q. Deng, C.Y. Tang, G.H. Rao, Int. J. Hydrogen Energy 39 (2014) 14887–14895.CrossRefGoogle Scholar
  53. [53]
    E.D. Wu, W.H. Li, J. Li, Int. J. Hydrogen Energy 37 (2012) 1509–1517.CrossRefGoogle Scholar
  54. [54]
    T.D. Wu, X.Y. Xue, T.B. Zhang, R. Hu, H.C. Kou, J.S. Li, J. Alloy. Compd. 645 (2015) 358–368.CrossRefGoogle Scholar
  55. [55]
    H.E. Kissinger, Anal. Chem. 29 (1957) 1702–1706.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Long Luo
    • 1
    • 2
  • Xuan Bian
    • 1
  • Wen-yuan Wu
    • 1
    Email author
  • Ze-ming Yuan
    • 2
  • Yong-zhi Li
    • 2
  • Ting-ting Zhai
    • 2
  • Feng Hu
    • 2
  1. 1.School of MetallurgyNortheastern UniversityShenyangChina
  2. 2.Analytical and Testing CenterInner Mongolia University of Science and TechnologyBaotouChina

Personalised recommendations