Journal of Iron and Steel Research International

, Volume 26, Issue 11, pp 1240–1248 | Cite as

Nanoscratching and mechanical behaviors of high-entropy alloys with different phase constituents

  • Jiang-li NingEmail author
  • Yun-li Feng
  • Xu-dong Li
  • Qi-bo DengEmail author
  • Yong-jiang Huang
Original Paper


High-entropy alloys (HEAs) exhibit unique microstructural features and properties in nanoscale and atomic scale because of their multi-element alloy system. The nanoscratching behaviors of three HEAs with different phase constituents, relative to the microstructure and mechanical properties of the HEAs, were investigated. Three typical phase constituents were selected: face-centered cubic (FCC) structure, body-centered cubic (BCC) structure, and a dual-phase structure containing both FCC and BCC phases. Despite the fact that the FCC alloy has the highest ductility and strain hardening capability, it exhibited inferior scratch resistance due to the over-softening of hardness. Due to the brittle failure mode, the BCC alloy hardly exhibited desirable scratch resistance despite its highest hardness. By contrast, the nanostructured dual-phase alloy exhibited the best scratch resistance because of its good combination of strength and ductility, as well as the ductile failure mode. This research suggests that the HEA with structure comprising nanoscale hard and soft phases is desirable for nanoscratch resistance, and possesses appropriate hardness for industrial applications.


High-entropy alloy Nanoscratch Mechanical property Microstructure Failure mode 



The authors are grateful for the financial supports from the Defense Industrial Technology Development Program (No. JCKY2018407C008), the National Natural Science Foundation of China (NSFC) (Grant Nos. 51304061 and 51474092), and the NCST Science Fund for Distinguished Young Scholars (No. JQ201702).


  1. [1]
    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299–303.Google Scholar
  2. [2]
    W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Intermetallics 26 (2012) 44–51.CrossRefGoogle Scholar
  3. [3]
    J. Joseph, N. Stanford, P. Hodgson, D.M. Fabijanic, J. Alloy. Compd. 726 (2017) 885–895.CrossRefGoogle Scholar
  4. [4]
    Y. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.H. Jie, Z.Q. Cao, H.H. Ruan, T.J. Li, Sci. Rep. 4 (2014) 6200.CrossRefGoogle Scholar
  5. [5]
    Y.P. Lu, X.Z. Gao, L. Jiang, Z.N. Chen, T.M. Wang, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan, Y.H. Zhao, Z.Q. Cao, T.J. Li, Acta Mater. 124 (2017) 143–150.CrossRefGoogle Scholar
  6. [6]
    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153–1158.CrossRefGoogle Scholar
  7. [7]
    Z.J. Zhang, M.M. Mao, J.W. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, R.O. Ritchie, Nat. Commun. 6 (2015) 10143.CrossRefGoogle Scholar
  8. [8]
    Y.Y. Chen, U.T. Hong, H.C. Shih, J.W. Yeh, T. Duval, Corros. Sci. 47 (2005) 2679–2699.CrossRefGoogle Scholar
  9. [9]
    H.P. Chou, Y.S. Chang, S.K. Chen, J.W. Yeh, Mater. Sci. Eng. B 163 (2009) 184–189.CrossRefGoogle Scholar
  10. [10]
    Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, J. Alloy. Compd. 488 (2009) 57–64.CrossRefGoogle Scholar
  11. [11]
    Y. Wang, Y. Yang, H. Yang, M. Zhang, J. Qiao, J. Alloy. Compd. 725 (2017) 365–372.CrossRefGoogle Scholar
  12. [12]
    A. Zhang, J. Han, B. Su, J. Meng, J. Alloy. Compd. 725 (2017) 700–710.CrossRefGoogle Scholar
  13. [13]
    T.M. Smith, M.S. Hooshmand, B.D. Esser, F. Otto, D.W. McComb, E.P. George, M. Ghazisaeidi, M.J. Mills, Acta Mater. 110 (2016) 352–363.CrossRefGoogle Scholar
  14. [14]
    H. Diao, L.J. Santodonato, Z. Tang, T. Egami, P.K. Liaw, JOM 67 (2015) 2321–2325.CrossRefGoogle Scholar
  15. [15]
    J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102 (2016) 187–196.CrossRefGoogle Scholar
  16. [16]
    X.D. Xu, P. Liu, S. Guo, A. Hirata, T. Fujita, T.G. Nieh, C.T. Liu, M.W. Chen, Acta Mater. 84 (2015) 145–152.CrossRefGoogle Scholar
  17. [17]
    Z. Wang, J. Li, Q. Fang, B. Liu, L. Zhang, Appl. Surf. Sci. 416 (2017) 470–481.CrossRefGoogle Scholar
  18. [18]
    D. Wu, J.S.C. Jang, T.G. Nieh, Intermetallics 68 (2016) 118–127.CrossRefGoogle Scholar
  19. [19]
    Z. Wang, S. Guo, Q. Wang, Z. Liu, J. Wang, Y. Yang, C.T. Liu, Intermetallics 53 (2014) 183–186.CrossRefGoogle Scholar
  20. [20]
    C. Zhu, Z.P. Lu, T.G. Nieh, Acta Mater. 61 (2013) 2993–3001.CrossRefGoogle Scholar
  21. [21]
    Y. Huang, Y.L.Chiu, J. Shen, Y. Sun, J.J.J. Chen, Intermetallics 18 (2010) 1056–1061.CrossRefGoogle Scholar
  22. [22]
    J.J. Zhang, T. Sun, Y.D. Yan, Y. Liang, Mater. Sci. Eng. A 505 (2009) 65–69.CrossRefGoogle Scholar
  23. [23]
    A.M. Hodge, T.G. Nieh, Intermetallics 12 (2004) 741–748.CrossRefGoogle Scholar
  24. [24]
    B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375–377 (2004) 213–218.CrossRefGoogle Scholar
  25. [25]
    S. Guo, C.T. Liu, Prog. Nat. Sci. Mater. Int. 21 (2011) 433–446.CrossRefGoogle Scholar
  26. [26]
    J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T Shun, C.H. Tsau, S.Y. Chang, Metall. Mater. Trans. A 35 (2004) 2533–2536.CrossRefGoogle Scholar
  27. [27]
    D.H. Lee, I.C. Choi, M.Y. Seok, J. He, Z. Lu, J.Y. Suh, M. Kawasaki, T.G. Langdon, J. Jang, J. Mater. Res. 30 (2015) 2804–2815.CrossRefGoogle Scholar
  28. [28]
    Z. Tang, O.N. Senkov, C.M. Parish, C. Zhang, F. Zhang, L.J. Santodonato, G. Wang, G. Zhao, F. Yang, P.K. Liaw, Mater. Sci. Eng. A 647 (2015) 229–240.CrossRefGoogle Scholar
  29. [29]
    C.C. Tung, J.W. Yeh, T.T. Shun, S.K. Chen, Y.S. Huang, H.C. Chen, Mater. Lett. 61 (2007) 1–5.CrossRefGoogle Scholar
  30. [30]
    J.H. Hollomon, Trans. AIME 162 (1945) 268–290.Google Scholar
  31. [31]
    C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, S.Y. Chang, Metall. Mater. Trans. A 36 (2005) 1263–1271.CrossRefGoogle Scholar
  32. [32]
    A. Dalmau, W. Rmili, D. Joly, C. Richard, A. Igual-Muňoz, Tribol. Lett. 56 (2014) 517–529.CrossRefGoogle Scholar
  33. [33]
    X. Xu, S. Zwaag, W. Xu, Wear 348–349 (2016) 148–157.CrossRefGoogle Scholar
  34. [34]
    A. Ball, Wear 91 (1983) 201–207.CrossRefGoogle Scholar
  35. [35]
    X. Xu, S. Zwaag, W. Xu, Wear 348–349 (2016) 80–88.Google Scholar
  36. [36]
    X. Xu, W. Xu, F.H. Ederveen, S. Zwaag, Wear 301 (2013) 89–93.CrossRefGoogle Scholar
  37. [37]
    P.J. Mutton, J.D. Watson, Wear 48 (1978) 385–398.CrossRefGoogle Scholar
  38. [38]
    A.K. Jha, B.K. Prasad, O.P. Modi, S. Das, A.H. Yegneswaran, Wear 254 (2003) 120–128.CrossRefGoogle Scholar
  39. [39]
    F. Katsuki, K. Watari, H. Tahira, M. Umino, Wear 264 (2008) 331–336.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  1. 1.College of Metallurgy and EnergyNorth China University of Science and TechnologyTangshanChina
  2. 2.Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and EngineeringTianjin University of TechnologyTianjinChina
  3. 3.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations