Journal of Iron and Steel Research International

, Volume 26, Issue 10, pp 1106–1116 | Cite as

Correlation between crystal structure and mechanical performance of Cr-implanted 300M high-strength steel using X-ray diffraction method

  • Xiao-hu Chen
  • Ping-ze ZhangEmail author
  • Dong-bo Wei
  • Xiao Huang
  • Feng Ding
  • Feng-kun Li
  • Xian-jun Dai
  • Zhang-zhong Wang
Original Paper


In order to study the influence of crystal structure change due to implantation dose on the hardness and wear performance of 300M high-strength steel, samples were surface modified by Cr implantation with dosages of 5.0 × 1016, 1.5 × 1017 and 3.0 × 1017 ions/cm2. X-ray diffraction method, which was already applied in studies on the microstructure of deformed and heat-treated materials, was used to study the crystal structure of the implanted steel, and the results were corrected with the hardness and wear performance. The solid solution strengthening effect and microstructure vary with increase in implantation dose. Owing to strong solid solution hardening of Cr, small average crystallite size and high dislocation density, the hardness and wear resistance of implanted steel with dose of 5.0 × 1016 ions/cm2 were found to be the highest compared with other samples. Moreover, although the crystallite size of the implanted sample with dose of 3 × 1017 ions/cm2 was similar to that of substrate and the dislocation density was lower than that of the substrate, its higher hardness and lower specific wear rate were due to the solid solution hardening and perhaps Cr clusters reinforcement.


X-ray diffraction method Ion implantation Dislocation density Hardness Wear Crystal structure 



This project was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, the Jiangsu Province Graduate Cultivation Innovative Project (Grant No. KYLX16_0347), Natural Science Foundation for Excellent Young Scientists of Jiangsu Province, China (Grant No. BK20180068), China Postdoctoral Science Foundation funded project, China (Grant No. 2018M630555), the Fundamental Research Funds for the Central Universities, China (Grant No. NS2018039) and the China Scholarship Council, China (Grant No. 201706830071, awarded to Xiao-hu Chen for 1 year of study at the Department of Mechanical and Aerospace Engineering, Carleton University). The raw/processed data required to reproduce these findings cannot be shared at this time due to contractual issues.


  1. [1]
    X. Chen, A. Soveja, M. Chaussumier, P. Zhang, D. Wei, F. Ding, Surf. Coat. Technol. 344 (2018) 572–578.CrossRefGoogle Scholar
  2. [2]
    Q.Z. An, K. Feng, H.P. Lü, X. Cai, T.T. Sun, P.K. Chu, Trans. Nonferrous Met. Soc. China 25 (2015) 1944–1949.CrossRefGoogle Scholar
  3. [3]
    X.Y. Li, S. Taniguchi, Y.C. Zhu, K. Fujita, N. Iwamoto, Y. Matsunaga, K. Nakagawa, Intermetallics 9 (2001) 443–449.CrossRefGoogle Scholar
  4. [4]
    M.I. Jamesh, G. Wu, Y. Zhao, D.R. McKenzie, M.M.M. Bilek, P.K. Chu, Corros. Sci. 82 (2014) 7–26.CrossRefGoogle Scholar
  5. [5]
    Z. Ba, Q. Dong, J. Yin, J. Wang, B. Ma, X. Zhang, Z. Wang, Mater. Lett. 190 (2017) 90–94.CrossRefGoogle Scholar
  6. [6]
    J. Jin, Y. Chen, K. Gao, X. Huang, Appl. Surf. Sci. 305 (2014) 93–100.CrossRefGoogle Scholar
  7. [7]
    A.D. Pogrebnjak, S.N. Bratushka, V.M. Beresnev, N. Levintant-Zayonts, Russ. Chem. Rev. 82 (2013) 1135–1159.CrossRefGoogle Scholar
  8. [8]
    A. Shypylenko, A.V. Pshyk, B. Grześkowiak, K. Medjanik, B. Peplinska, K. Oyoshi, A. Pogrebnjak, S. Jurga, E. Coy, Mater. Des. 110 (2016) 821–829.CrossRefGoogle Scholar
  9. [9]
    Z. Xie, Z. Luo, Q. Yang, T. Chen, S. Tan, Y. Wang, Y. Luo, Vacuum 101 (2014) 171–176.CrossRefGoogle Scholar
  10. [10]
    L.P. Ward, K.P. Purushotham, R.R. Manory, Nucl. Inst. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 368 (2016) 37–44.Google Scholar
  11. [11]
    A.D. Pogrebnjak, I.V. Yakushchenko, O.V. Bondar, V.M. Beresnev, K. Oyoshi, O.M. Ivasishin, J. Alloy. Compd. 679 (2016) 155–163.CrossRefGoogle Scholar
  12. [12]
    K.V. Shalnov, V.K. Kukhta, K. Uemura, Y. Ito, Surf. Coat. Technol. 206 (2011) 849–853.CrossRefGoogle Scholar
  13. [13]
    D. Liu, Q. Zhang, Z. Qin, Q. Luo, Z. Wu, L. Liu, Appl. Surf. Sci. 363 (2016) 161–167.CrossRefGoogle Scholar
  14. [14]
    S. Miyake, Tribol. Lett. 2 (1996) 241–246.Google Scholar
  15. [15]
    J. Jie, T.M. Shao, Materials 10 (2017) 1204.CrossRefGoogle Scholar
  16. [16]
    Y.P. Sharkeev, A.N. Didenko, E.V. Kozlov, Surf. Coat. Technol. 65 (1994) 112–120.CrossRefGoogle Scholar
  17. [17]
    Y.P. Sharkeev, E.V. Kozlov, A.N. Didenko, S.N. Kolupaeva, N.A. Vihor, Surf. Coat. Technol. 83 (1996) 15–21.CrossRefGoogle Scholar
  18. [18]
    Y.P. Sharkeev, E.V. Kozlov, Surf. Coat. Technol. 158–159 (2002) 219–224.CrossRefGoogle Scholar
  19. [19]
    P. Budzynski, Nucl. Inst. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 342 (2015) 1–6.Google Scholar
  20. [20]
    J. Davis, K. Short, R. Wuhrer, M.R. Phillips, G.R. Lumpkin, K.R. Whittle, Nucl. Inst. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 295 (2013) 38–41.Google Scholar
  21. [21]
    H. Pal, A. Chanda, M. De, J. Alloy. Compd. 278 (1998) 209–215.Google Scholar
  22. [22]
    G. Dini, R. Ueji, A. Najafizadeh, S.M. Monir-Vaghefi, Mater. Sci. Eng. A 527 (2010) 2759–2763.CrossRefGoogle Scholar
  23. [23]
    J. Aufrecht, A. Leineweber, J. Foct, E.J. Mittemeijer, Philos. Mag. 88 (2008) 1835–1855.CrossRefGoogle Scholar
  24. [24]
    M. Augustin, T. Balu, Int. J. Nanosci. 16 (2017) 1650035.CrossRefGoogle Scholar
  25. [25]
    Z. Tao, Z. Tonghe, C. Jun, Z. Huixing, M. Benkun, Nucl. Inst. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 122 (1997) 59–62.Google Scholar
  26. [26]
    Z. Werner, W. Starosta, J. Piekoszewski, R. Grötzschel, M. Barlak, M. Pisarek, W. Szymczyk, Trans. Mater. Res. Soc. Japan 36 (2011) 119–121.CrossRefGoogle Scholar
  27. [27]
    S. Medvedeva, D. Koiva, S.A. Alexandrovich, C.P. Nikolaevich, Vestn. IKBFU (2014) 7–13.Google Scholar
  28. [28]
    S.J. Bull, Y.P. Sharkeev, S.V. Fortuna, I.A. Shulepov, A.J. Perry, J. Mater. Res. 16 (2001) 3293–3303.CrossRefGoogle Scholar
  29. [29]
    J. Jin, T. Shao, Surf. Coat. Technol. 344 (2018) 303–311.CrossRefGoogle Scholar
  30. [30]
    F. Wang, C. Zhou, L. Zheng, H. Zhang, Appl. Surf. Sci. 392 (2017) 305–311.CrossRefGoogle Scholar
  31. [31]
    B.D. Sartwell, J.M. For, E. Systems, Mater. Engery Syst. 8 (1986) 246-254.CrossRefGoogle Scholar
  32. [32]
    I.L. Singer, Appl. Surf. Sci. 18 (1984) 28–62.CrossRefGoogle Scholar
  33. [33]
    S.R. Soria, A.J. Tolley, E.A. Sánchez, Procedia Mater. Sci. 8 (2015) 486–493.CrossRefGoogle Scholar
  34. [34]
    B. Zhu, S. Yang, J. Ding, W. Zhang, Y. Long, F. Wan, Fusion Eng. Des. 100 (2015) 171–176.CrossRefGoogle Scholar
  35. [35]
    J. Dudognon, M. Vayer, A. Pineau, R. Erre, Surf. Coat. Technol. 203 (2008) 180–185.CrossRefGoogle Scholar
  36. [36]
    Y. Li, F. Zhang, T.T. Zhao, M. Tang, Y. Liu, Rare Met. 33 (2014) 244–248.CrossRefGoogle Scholar
  37. [37]
    R.M. Oliveira, C.B. Mello, G. Silva, J.A.N. Gonçalves, M. Ueda, L. Pichon, Surf. Coat. Technol. 205 (2011) S111–S114.CrossRefGoogle Scholar
  38. [38]
    B. Deng, Y. Tao, Z. Hu, Appl. Surf. Sci. 284 (2013) 405–411.CrossRefGoogle Scholar
  39. [39]
    K. Feng, Y. Wang, Z. Li, P.K. Chu, Mater. Charact. 106 (2015) 11–19.CrossRefGoogle Scholar
  40. [40]
    K. Langguth, H. Ryssel, Wear 161 (1993) 127–133.CrossRefGoogle Scholar
  41. [41]
    K. Lei, W. Yu, J. Yuan, L. Zhang, Wear 209 (1997) 301–307.CrossRefGoogle Scholar
  42. [42]
    N. Umehara, B.H. Moon, K. Kato, Wear 218 (1998) 210–215.CrossRefGoogle Scholar
  43. [43]
    N. Akbas, A. Oztarhan, O.R. Monteiro, I.G. Brown, Wear 252 (2002) 540–545.CrossRefGoogle Scholar
  44. [44]
    G.M. Mehrotra, V.K. Jain, H.M. Urdianyk, B.D. Barton, Wear 159 (1992) 47–55.CrossRefGoogle Scholar
  45. [45]
    Z. Qiu, P. Zhang, D. Wei, B. Duan, P. Zhou, Tribol. Int. 92 (2015) 512–518.CrossRefGoogle Scholar
  46. [46]
    S. Fayeulle, I.L. Singer, Mater. Sci. Eng. A 115 (1989) 285–290.Google Scholar
  47. [47]
    V. Ashworth, D. Baxter, W.A. Grant, R.P.M Procter, Corros. Sci. 16 (1976) 775–786.Google Scholar
  48. [48]
    C. Liang, N. Huang, Appl. Surf. Sci. 255 (2008) 3205–3209.CrossRefGoogle Scholar
  49. [49]
    I. Lucks, P. Lamparter, E.J. Mittemeijer, J. Appl. Crystall. 37 (2004) 300–311.CrossRefGoogle Scholar
  50. [50]
    G.K. Williamson, W.H. Hall, Acta Metall. 1 (1953) 22–31.CrossRefGoogle Scholar
  51. [51]
    R.E. Smallman, K.H. Westmacott, Philos. Mag. 2 (1957) 669–683.CrossRefGoogle Scholar
  52. [52]
    L. Lutterotti, S. Gialanella, Acta Mater. 46 (1998) 101–110.CrossRefGoogle Scholar
  53. [53]
    M.J. Hordon, B.L. Averbach, Acta Metall. 9 (1961) 247–249.CrossRefGoogle Scholar
  54. [54]
    M.J. Hordon, B.L. Averbach, Acta Metall. 9 (1961) 237–246.CrossRefGoogle Scholar
  55. [55]
    K. Nidhi, S. Indrajeet, M. Khushboo, K. Gauri, D.J. Sen, Int. J. Drug Dev. Res. 3 (2011) 26–33.Google Scholar
  56. [56]
    Z.K. Qiu, P.Z. Zhang, D.B. Wei, X.F. Wei, X.H. Chen, Surf. Coat. Technol. 278 (2015) 92-98.CrossRefGoogle Scholar
  57. [57]
    F.L. Shang, X. Zhang, X.C. Guo, P.F. Zhao, Y. Chang, Surf. Eng. 30 (2014) 283–289.CrossRefGoogle Scholar
  58. [58]
    X. Chen, P. Zhang, D. Wei, H. Zhao, X. Wei, F. Ding, J. Mater. Eng. Perform. 26 (2017) 1-9.CrossRefGoogle Scholar
  59. [59]
    J.X. Guo, X. Cai, Q.L. Chen, J. Mater. Sci. Technol. 20 (2004) 265–268.Google Scholar
  60. [60]
    J. Sasaki, K. Hayashi, K. Sugiyama, O. Ichiko, Y. Hashiguchi, Surf. Coat. Technol. 51 (1992) 166–175.CrossRefGoogle Scholar
  61. [61]
    W. Cao, B.W. Li, C.W. Guo, X.Y. Mao, Q.Q. Ma, Min. Sci. Technol. 19 (2009) 133–136.Google Scholar
  62. [62]
    X. Cheng, Z. Jiang, B. Kosasih, H. Wu, S. Luo, L. Jiang, Tribol. Lett. 63 (2016) 1–13.CrossRefGoogle Scholar
  63. [63]
    T. Akhadejdamrong, T. Aizawa, M. Yoshitake, A. Mitsuo, T. Yamamoto, Y. Ikuhara, Wear 254 (2003) 668–679.CrossRefGoogle Scholar
  64. [64]
    A. Kinomura, R. Suzuki, T. Ohdaira, N. Oshima, K. Ito, Y. Kobayashi, Surf. Coat. Technol. 206 (2011) 834–836.CrossRefGoogle Scholar
  65. [65]
    E.P. Abrahamson, S.L. Lopata, Trans. Metall. Soc. AIME 236 (1966) 76–87.Google Scholar
  66. [66]
    A. Sutton, W. Hume-Rothery, Philos. Mag. 46 (1955) 1295–1309.CrossRefGoogle Scholar
  67. [67]
    Z.Y. Feng, Case Western Reserve University School of Graduate Studies, Columbus, US, 2015.Google Scholar
  68. [68]
    M.J. Piehl, R.H. Bossi, K.Y. Blohowiak, M.A. Dilligan, SAMPE 2013 Proceedings (2013) 58–83Google Scholar
  69. [69]
    A. Arbor, Prog. Surf. Sci. 32 (1990) 211–332.Google Scholar
  70. [70]
    J. Zhou, J. Odqvist, M. Thuvander, S. Hertzman, P. Hedström, Acta Mater. 60 (2012) 5818–5827.CrossRefGoogle Scholar
  71. [71]
    J. Zhou, J. Odqvist, L. Höglund, M. Thuvander, T. Barkar, P. Hedström, Scripta Mater. 75 (2014) 62–65.CrossRefGoogle Scholar
  72. [72]
    R. Ritzenhoff, A. Hahn, Corros. Resist. 3 (2012) 55–80.Google Scholar
  73. [73]
    J. Kwon, Y.B. Lee, H.H. Jin, C. Shin, G.G. Lee, Radiat. Eff. Defects Solid. 169 (2014) 467–477.CrossRefGoogle Scholar
  74. [74]
    A. Bhattacharya, E. Meslin, J. Henry, C. Pareige, B. Décamps, C. Genevois, D. Brimbal, A. Barbu, Acta Mater. 78 (2014) 394–403.CrossRefGoogle Scholar
  75. [75]
    M.L. Jenkins, Z. Yao, M. Hernández-Mayoral, M.A. Kirk, J. Nucl. Mater. 389 (2009) 197–202.CrossRefGoogle Scholar
  76. [76]
    E.P. EerNisse, S.T. Picraux, J. Appl. Phys. 48 (1977) 9–17.CrossRefGoogle Scholar
  77. [77]
    L.P.M. Domkus, Vilnus Moksl. 7 (1990) 158-160.Google Scholar
  78. [78]
    D.S. Kryzhevich, K.P. Zolnikov, A.V. Korchuganov, J. Phys. Conf. Ser. 946 (2018) 12-23.Google Scholar
  79. [79]
    F.V. Makarove, V.V. Guzeev, V.P. Pishchulin, A.Y. Svarovskiy, T.I. Guzeeva, Chemistry for Sustainable Development 19 (2011) 503–508.Google Scholar
  80. [80]
    T.M. Beagley, Wear 47 (1978) 417–418.CrossRefGoogle Scholar
  81. [81]
    D.A. Rigney, W.A. Glaeser, Wear 46 (1978) 241–250.CrossRefGoogle Scholar
  82. [82]
    N.P. Suh, Wear 44 (1977) 1–16.CrossRefGoogle Scholar
  83. [83]
    C. Greiner, Z. Liu, R. Schneider, L. Pastewka, P. Gumbsch, Scripta Mater. 153 (2018) 63–67.CrossRefGoogle Scholar
  84. [84]
    U. Messerschmidt, M. Bartsch, M. Feuerbacher, B. Geyer, K. Urban, Philos. Mag. A 79 (1999) 2123–2135.CrossRefGoogle Scholar
  85. [85]
    A.K. Basak, A. Pramanik, M.N. Islam, V. Anandakrishnan, Woodhead Publishing 14 (2015) 349–367.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  1. 1.College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Ningbo BranchChina Ordnance AcademyNingboChina
  3. 3.Jiangsu Key Laboratory of Advanced Structural Materials and Application TechnologyNanjingChina
  4. 4.Key Laboratory of Materials Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics)Ministry of Industry and Information TechnologyNanjingChina
  5. 5.Department of Mechanical and Aerospace EngineeringCarleton UniversityOttawaCanada

Personalised recommendations