Advertisement

Journal of Iron and Steel Research International

, Volume 26, Issue 10, pp 1061–1068 | Cite as

Analysis of transient mold friction under different scales based on wavelet entropy theory

  • Yong MaEmail author
  • Qi-qi Ding
  • Kai Chen
  • Lan-jun Liu
  • Bo-han Fang
  • Fei Liu
Original Paper
  • 21 Downloads

Abstract

The mold friction (MDF) is an important parameter reflecting the lubrication between the mold and slab quantitatively. The mold/slab friction was detected using an online monitoring system on a slab continuous caster equipped with hydraulic oscillators. Wavelet entropy theory was introduced to describe the fluctuation characteristics of the MDF signal in order to quantitatively estimate the mold/slab lubrication. Furthermore, MDF signal and its wavelet entropy were analyzed under typical casting conditions, such as normal casting, different models (to control the relationship among the amplitude, the frequency and the casting speed), changing casting speeds and breakout. The results showed that the wavelet entropy could accurately reflect the overall changing trend of the mold friction as well as the local variation features. Besides, the wavelet entropy of the hydraulic cylinder force and the MDF was compared and analyzed, and the relationship between them was further discussed.

Keywords

Mold friction Wavelet entropy theory Time–frequency analysis Feature extraction Lubrication 

Notes

Acknowledgements

The project was supported by the National Natural Science Foundation of China (No. 51204063) and the Anhui Provincial Natural Science Foundation (No. 1308085QE72).

References

  1. [1]
    X. Wang, S. Zhang, M. Yao, H. Ma, X. Zhang, Ironmak. Steelmak. 41 (2014) 464–473.CrossRefGoogle Scholar
  2. [2]
    C. Chow, I.V. Samarasekera, B.N. Walker, G. Lockhart, Ironmak. Steelmak. 29 (2002) 61–69.CrossRefGoogle Scholar
  3. [3]
    C. Capurro, C. Cicutti, A. Carranza, M. Beirana, L. Ferro, Iron Steel Technol. 3 (2006) 45–51.Google Scholar
  4. [4]
    M. Yao, D.C. Fang, Ironmak. Steelmak. 23 (1996) 522–527.Google Scholar
  5. [5]
    P. Valentin, C. Bruch, A.C. Horn, Steel Res. Int. 75 (2004) 666–671.CrossRefGoogle Scholar
  6. [6]
    M. Suzuki, S. Miyahara, T. Kitagawa, S. Uchida, T. Mori, K. Okimoto, Tetsu-to-Hagane 78 (1992) 113–120.CrossRefGoogle Scholar
  7. [7]
    X.D. Wang, X.Y. Zang, Y. Ma, M. Yao, L. Zhang, Iron and Steel 41 (2006) No. 11, 23–25.Google Scholar
  8. [8]
    C. Bernhard, H. Hiebler, M.M. Wolf, Ironmak. Steelmak. 27 (2000) 450–454.CrossRefGoogle Scholar
  9. [9]
    J. Watzinger, A. Pesek, N. Huebner, M. Pillwax, O. Lang, Ironmak. Steelmak. 32 (2005) 208–212.CrossRefGoogle Scholar
  10. [10]
    M.R. Ozgu, Can. Metall. Quart. 35 (1996) 199–223.CrossRefGoogle Scholar
  11. [11]
    G. Alvarez de Toledo, J. Ciriza, J.J. Laraudogoitia, Ironmak. Steelmak. 30 (2003) 353–359.CrossRefGoogle Scholar
  12. [12]
    P. Xu, X. Hu, D. Yao, Comput. Biol. Med. 43 (2013) 425–433.CrossRefGoogle Scholar
  13. [13]
    S. Shah, H. Mehta, K. Shah, J. Mehta, Int. J. Curr. Eng. Technol. 4 (2014) 1292–1295.Google Scholar
  14. [14]
    H.H. Bafroui, A. Ohadi, Neurocomputing 133 (2014) 437–445.CrossRefGoogle Scholar
  15. [15]
    G. Alvarez de Toledo, J. Ciriza, J.J. Laraudogoitia, A. Arteaga, Ironmak. Steelmak. 30 (2003) 360–368.CrossRefGoogle Scholar
  16. [16]
    Y. Ma, C. Peng, W. Gui, F.Y. Wang, J. Iron Steel Res. Int. 22 (2015) 785–794.CrossRefGoogle Scholar
  17. [17]
    Y. Ma, F.Y. Wang, C. Peng, W. Gui, B.H. Fang, Metall. Mater. Trans. B 47 (2016) 1565–1572.CrossRefGoogle Scholar
  18. [18]
    S. Yu, D.F. Chen, H.J. Long, M.J. Long, K. Lü, X. Xie, J. Iron Steel Res. 28 (2016) No. 1, 32–37.Google Scholar
  19. [19]
    X.D. Wang, M. Yao, B. Du, D.C. Fang, L. Zhang, Y.X. Chen, Ironmak. Steelmak. 34 (2007) 138–144.CrossRefGoogle Scholar
  20. [20]
    Z. Zhang, H. Ikeuci, H. Toda, T. Miyake, T. Imamura, H. Ishi, S. Horihata, Int. J. Innov. Comput. Inf. Control 4 (2008) 1009–1022.Google Scholar
  21. [21]
    O.A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schürmann, E. Başar, J. Neurosci. Methods 105 (2001) 65–75.CrossRefGoogle Scholar
  22. [22]
    M. Suzuki, H. Mizukami, T. Kitagawa, K. Kawakami, S. Uchida, Y. Komatsu, ISIJ Int. 31 (1991) 254–261.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHefei University of TechnologyHefeiChina

Personalised recommendations