Advertisement

Journal of Iron and Steel Research International

, Volume 26, Issue 9, pp 1022–1030 | Cite as

Effects of alloying elements on thermal conductivity of pearlitic gray cast iron

  • Gui-quan Wang
  • Xiang ChenEmail author
  • Yan-xiang Li
  • Yuan Liu
  • Hua-wei Zhang
  • Zhong-li Liu
Original Paper
  • 17 Downloads

Abstract

A quantitative model is proposed to describe the thermal conductivity of alloyed pearlitic gray cast iron. The model is built by combining the computational thermodynamics and effective medium theory. The volume fractions and concentrations of precipitated phases in as-cast structure are estimated in consideration of partial and para-equilibrium. The conductivity of alloyed ferrite is calculated, taking into account the electronic and vibrational contributions of alloying elements. The model provides a good agreement with microstructure analysis and measured thermal conductivity. The influence of common alloying elements was discussed from the viewpoint of precipitation of phases and scattering of alloying atoms. This model can also be used as a numerical tool for designing the pearlitic gray cast irons with high thermal conductivity and high tensile strength.

Keywords

Thermal conductivity Thermodynamic model Gray cast iron Alloying element 

References

  1. [1]
    F. Szmytka, A. Oudin, Int. J. Fatigue 53 (2016) 82–91.CrossRefGoogle Scholar
  2. [2]
    P. Lan, J.Q. Zhang, Mater. Des. 54 (2014) 112–120.CrossRefGoogle Scholar
  3. [3]
    F. Bagnoli, F. Dolce, M. Bernabei, Eng. Fail. Anal. 16 (2009) 152–163.CrossRefGoogle Scholar
  4. [4]
    G.M.C. Güiza, W. Hormaza, A.R. Galvis, L.M.M. Moreno, Eng. Fail. Anal. 82 (2017) 138–148.CrossRefGoogle Scholar
  5. [5]
    X. Ding, H. Huang, W. Matthias, S. Huang, Y. Lu, Q. Feng, Metall. Mater. Trans. A 49 (2018) 3173–3177.CrossRefGoogle Scholar
  6. [6]
    M.C. Rukadikar, G.P. Reddy, J. Mater. Sci. 21 (1986) 4403–4410.CrossRefGoogle Scholar
  7. [7]
    R.L. Hecht, R.B. Dinwiddie, H. Wang, J. Mater. Sci. 34 (1999) 4775–4781.CrossRefGoogle Scholar
  8. [8]
    D. Holmgren, I.L. Svensson, Int. J. Cast Metal. Res. 18 (2005) 321–330.CrossRefGoogle Scholar
  9. [9]
    D. Holmgren, R. Kallbom, I.L. Svensson, Metall. Mater. Trans. A 38 (2007) 268–275.CrossRefGoogle Scholar
  10. [10]
    M. Moonesan, A.H. Raouf, F. Madah, A.H. Zadeh, J. Alloy. Compd. 520 (2012) 226–231.CrossRefGoogle Scholar
  11. [11]
    M. Chisamera, I. Riposan, S. Stan, C. Militaru, I. Anton, M. Barstow, J. Mater. Eng. Perform. 21 (2012) 331–338.CrossRefGoogle Scholar
  12. [12]
    L. Collini, G. Nicoletto, R. Konecna, Mater. Sci. Eng. A 488 (2008) 529–539.CrossRefGoogle Scholar
  13. [13]
    D. Holmgren, J. Cast Metal. Res. 18 (2005) 331–345.CrossRefGoogle Scholar
  14. [14]
    M. Selin, M. Konig, Metall. Mater. Trans. A 40 (2009) 3235–3244.CrossRefGoogle Scholar
  15. [15]
    J. Helsing, G. Grimvall, J. Appl. Phys. 70 (1991) 1198–1206.CrossRefGoogle Scholar
  16. [16]
    T. Kraft, Y.A. Chang, JOM 49 (1997) 20–28.CrossRefGoogle Scholar
  17. [17]
    H.T. Angus, Cast iron: physical and engineering properties, 2nd ed., Butterworth, London, UK, 1976.Google Scholar
  18. [18]
    Q. Chen, B. Sundman, Mater. Trans. 43 (2002) 551–559.CrossRefGoogle Scholar
  19. [19]
    M. Hiller, Phase equilibria, phase diagrams and phase transformations, 2nd ed., Cambridge University Press, New York, USA, 2008.Google Scholar
  20. [20]
    T. Koshikawa, C.A. Gandin, M. Bellet, H. Yamamura, M. Bobadilla, ISIJ Int. 54 (2014) 1274–1282.CrossRefGoogle Scholar
  21. [21]
    R.K. Williams, D.W. Yarbrough, J.W. Masey, T.K. Holder, R.S. Graves, J. Appl. Phys. 52 (1981) 5167–5175.CrossRefGoogle Scholar
  22. [22]
    D. Korn, H. Pfeifle, J. Niebuhr, Z. Phy. B Con. Mat. 23 (1976) 23–26.Google Scholar
  23. [23]
    Y. Terada, K. Ohkubo, T. Mohri, T. Suzuki, ISIJ Int. 42 (2002) 322–324.CrossRefGoogle Scholar
  24. [24]
    R.K. Williams, R.S. Graves, F.J. Weaver, D.W. Yarbrough, J. Appl. Phys. 62 (1987) 2778–2783.CrossRefGoogle Scholar
  25. [25]
    A. Fert, I.A. Campbell, J. Phys. F Met. Phys. 6 (1976) 849–871.CrossRefGoogle Scholar
  26. [26]
    R. Bertodo, J. Strain Anal. Eng. 5 (1970) 98–109.CrossRefGoogle Scholar
  27. [27]
    W. Xu, M. Ferry, Y. Wang, Mater. Sci. Eng. A 390 (2005) 326–333.CrossRefGoogle Scholar
  28. [28]
    X. Ding, X. Li, H. Huang, W. Matthias, S. Huang, Q. Feng, Mater. Sci. Eng. A 718 (2018) 483–491.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Gui-quan Wang
    • 1
    • 2
  • Xiang Chen
    • 1
    • 3
    Email author
  • Yan-xiang Li
    • 1
    • 3
  • Yuan Liu
    • 1
    • 3
  • Hua-wei Zhang
    • 1
    • 3
  • Zhong-li Liu
    • 2
  1. 1.School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  2. 2.School of Nuclear Equipment and Nuclear EngineeringYantai UniversityYantaiChina
  3. 3.Key Laboratory for Advanced Materials Processing TechnologyTsinghua UniversityBeijingChina

Personalised recommendations