Journal of Iron and Steel Research International

, Volume 26, Issue 9, pp 973–982 | Cite as

Effect of cooling rate on microstructure and inclusion in non-quenched and tempered steel during horizontal directional solidification

  • Hui Liu
  • Zong-ze Huang
  • Da-jiang Yu
  • De-lin Hu
  • Hong-gang Zhong
  • Qi-jie Zhai
  • Jian-xun FuEmail author
Original Paper


In order to investigate the relationship between microstructure and MnS inclusion in non-quenched and tempered steel, and cooling rate during horizontal directional solidification, 49MnVS steel was used to conduct the experiments with a self-designed device. The mathematical effect of cooling rate on dendritic arm spacing and mean diameter of MnS particles (dMnS) were determined by using linear regression method. The results show that the length of dendrite from solid–liquid interface to end-solidification decreased with increasing the withdrawal velocity (ϑ). dMnS has a similar value in the area of the steady directional solidification; the value of dMnS was 4.1, 3.6, 3.3, 2.8 and 2.3 μm at withdrawal velocity of 50, 75, 100, 150 and 200 μm/s, respectively. dMnS increased with reducing ϑ or RC (interface cooling rate). MnS precipitated in the gaps between dendrites and was influenced by secondary dendritic arm spacing. Besides, a new concept of the ‘Precipitation Unit Space’ (PUS) was proposed and the relationships between dMnS, VPUS (volume of PUS) and RC were obtained.


Horizontal directional solidification Dendrite MnS Inclusion Cooling rate 



This work is supported by National Key Research and Development Program of China (2018YFB0704400), and the National Natural Science Foundation of China (Grant Nos. 51671124 and 51474142), and the support of State Key Laboratory of Development and Application Technology of Automotive Steels (Baosteel Group).


  1. [1]
    K. Oikawa, H. Ohtani, K. Ishida, T. Nishizawa, ISIJ Int. 35 (1995) 402–408.CrossRefGoogle Scholar
  2. [2]
    H.S. Kim, H.G. Lee, K.S. Oh, ISIJ Int. 42 (2002) 1404–1411.CrossRefGoogle Scholar
  3. [3]
    J.H. Liu, X.F. Su, H.B. Liu, Z.B. Han, Y. He, S.T. Qiu, Metall. Res. Technol. 114 (2017) 409–416.CrossRefGoogle Scholar
  4. [4]
    I. Madariaga, I. Gutiérrez, Acta Mater. 47 (1999) 951–960.CrossRefGoogle Scholar
  5. [5]
    G.H. Xiao, H. Dong, M.Q. Wang, W.J. Hui, J. Iron Steel Res. Int. 18 (2011) No. 8, 58–64.CrossRefGoogle Scholar
  6. [6]
    L. Liu, T.W. Huang, M. Qu, G. Liu, J. Zhang, H.Z. Fu, J. Mater. Process. Technol. 210 (2010) 159–165.CrossRefGoogle Scholar
  7. [7]
    M. Imagumbai, T. Taked, ISIJ Int. 34 (1994) 574–583.CrossRefGoogle Scholar
  8. [8]
    M.A. Taha, J. Mater. Sci. Lett. 5 (1986) 307–310.CrossRefGoogle Scholar
  9. [9]
    M.A. Taha, H. Jacobi, M. Imagumbai, K. Schwerdtfeger, Metall. Trans. A 13 (1982) 2131–2141.CrossRefGoogle Scholar
  10. [10]
    H.G. Zhong, X. Cao, X.R. Chen, J.Y. Zhang, Q.J. Zhai, Chin. J. Nonferrous Met. 23 (2013) 2792–2799.CrossRefGoogle Scholar
  11. [11]
    L. Bai, B. Wang, H.G. Zhong, J. Ni, Q.J. Zhai, J.Y. Zhang, Metals 6 (2016) 53–64.CrossRefGoogle Scholar
  12. [12]
    H.G. Zhong, X.R. Chen, L. Ou, R.X. Li, Q.J. Zhai, A method for simulated horizontal growth process of solidification microstructure, CN101722291A, 2013.Google Scholar
  13. [13]
    D. Janis, R. Inoue, A. Karasev, Adv. Mater. Sci. Eng. 2014 (2014) 1–7.CrossRefGoogle Scholar
  14. [14]
    H. Kaya, M. Gündüz, E. Çadırlı, N. Maraşlı, J. Alloy. Compd. 478 (2009) 281–286.CrossRefGoogle Scholar
  15. [15]
    A. Berkdemir, M. Gündüz, Appl. Phys. A 96 (2009) 873–886.CrossRefGoogle Scholar
  16. [16]
    C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A.D. Pelton, S. Petersen, Calphad 26 (2002) 189–228.CrossRefGoogle Scholar
  17. [17]
    C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, C. Robelin, S. Petersen, Calphad 33 (2009) 295–311.CrossRefGoogle Scholar
  18. [18]
    C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, MA. Van Ende, Calphad 55 (2016) 1–19.CrossRefGoogle Scholar
  19. [19]
    A. Weidner, D. Krewerth, B. Witschel, M. Emmel, A. Schmidt, J. Gleinig, O. Volkova, C.G. Aneziris, H. Biermann, Steel Res. Int. 87 (2016) 1038–1053.CrossRefGoogle Scholar
  20. [20]
    T.P. Qu, J. Tian, K.K. Chen, Z. Xu, D.Y. Wang, Ironmak. Steelmak. 46 (2017) 353–358.Google Scholar
  21. [21]
    W. Kurz, in: D.J. Fisher (Eds.), Fundamentals of solidification, 3rd ed., Trans. Tech. Publications Ltd., Aedermannsdorf, Switzerland, 1989.Google Scholar
  22. [22]
    Y.J. Xia, F.M. Wang, C.R. Li, J.L. Wang, C.H. Wu, J. Univ. Sci. Technol. Beijing 34 (2012) 118–124.Google Scholar
  23. [23]
    X. Li, A. Gagnoud, Y. Fautrelle, Z.M. Ren, R. Moreau, Y.D. Zhang, C. Esling, Acta Mater. 60 (2012) 3321–3332.CrossRefGoogle Scholar
  24. [24]
    K.P. Young, D.H. Kerkwood, Metall. Trans. A 6 (1975) 197–205.CrossRefGoogle Scholar
  25. [25]
    H. Jacobi, K. Schwerdtfeger, Metall. Trans. A 7 (1976) 811–820.CrossRefGoogle Scholar
  26. [26]
    F. Bertelli, C. Brito, I.L. Ferreira, G. Reinhart, H. Nguyen-Thi, N. Mangelinck-Noël, N. Cheung, A. Garcia, Mater. Des. 72 (2015) 31–42.CrossRefGoogle Scholar
  27. [27]
    M. Imagumbai, ISIJ Int. 34 (1994) 896–905.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Hui Liu
    • 1
  • Zong-ze Huang
    • 2
  • Da-jiang Yu
    • 2
  • De-lin Hu
    • 1
  • Hong-gang Zhong
    • 1
  • Qi-jie Zhai
    • 1
  • Jian-xun Fu
    • 1
    Email author
  1. 1.State Key Laboratory of Advanced Special Steel, School of Materials Science and EngineeringShanghai UniversityShanghaiChina
  2. 2.State Key Laboratory of Development and Application Technology of Automotive Steels (Baosteel Group)ShanghaiChina

Personalised recommendations