Advertisement

Interface reaction of high-strength low-alloy steel with Al–43.4Zn–1.6Si (wt.%) metallic coating

  • Wang-jun Peng
  • Guang-xin WuEmail author
  • Yi Cheng
  • Jie-yu Zhang
Original Paper
  • 9 Downloads

Abstract

The microstructure, elemental distribution, phase composition, and thickness of intermetallic layers between high-strength low-alloy steel (H420)/mild carbon steel (DC51) and Al–43.4Zn–1.6Si (wt.%) (galvalume, GL) alloy were comparatively investigated. The experimental results reveal that the interfacial reaction layer was composed of Fe2Al5, Fe4Al13, and Al8Fe2Si intermetallic compounds. Moreover, the growth curves of the Fe2Al5 and Fe4Al13 intermetallic layers fit the parabolic law well, and the total thickness of the intermetallic layers of H420 + GL was almost the same as that of DC51 + GL. However, the thickness of the Fe2Al5 layer in H420 + GL was thinner than that in DC51 + GL. In addition, first-principle calculations were performed to explore the effect of Mn on the growth of the Fe2Al5 intermetallic phase, and the results indicate that Mn substitution in Fe2Al5 removes electronic charge from the Al atoms, thus decreasing the thickness of the Fe2Al5 interface layer.

Keywords

High-strength low-alloy steel Mild carbon steel Al–43.4Zn–1.6Si (wt.%) alloy Interface reaction 

Notes

Acknowledgements

The author Guang-xin Wu would like to acknowledge the support from Science and Technology Committee of Shanghai (Grant No. 16ZR1412000), National Natural Science Foundation of China (Grant Nos. 51674163 and 51104098) and Guiyang Science and Technology Project (Grant No. 20161001).

References

  1. [1]
    B.J. Xu, Nucleation and growth of 55% Al–Zn alloy on steel substrate, University of Wollongong, Wollongong, Australia, 2005.Google Scholar
  2. [2]
    N. Takata, M. Nishimoto, S. Kobayashi, M. Takeyama, Intermetallics 67 (2015) 1–11.CrossRefGoogle Scholar
  3. [3]
    H. Shahverdi, M. Ghomashchi, S. Shabestari, J. Hejazi, J. Mater. Process. Tech. 124 (2002) 345–352.CrossRefGoogle Scholar
  4. [4]
    Y. Han, C. Ban, Q. Ba, S.J. Guo, S.H. Wang, J.Z. Cui, Mater. Lett. 60 (2006) 1884–1887.CrossRefGoogle Scholar
  5. [5]
    A. Bouayad, C. Gerometta, A. Belkebir, A. Ambari, Mater. Sci. Eng. A 363 (2003) 53–61.CrossRefGoogle Scholar
  6. [6]
    K.A. Nazari, S.G. Shabestari, J. Alloy. Compd. 478 (2009) 523–530.CrossRefGoogle Scholar
  7. [7]
    W.J. Cheng, C.J. Wang, Mater. Charact. 61 (2010) 467–473.CrossRefGoogle Scholar
  8. [8]
    H. Springer, A. Kostka, E.J. Payton, D. Raabe, A. Kaysser-Pyzalla, G. Eggeler, Acta Mater. 59 (2011) 1586–1600.CrossRefGoogle Scholar
  9. [9]
    W.M. Jiang, Z.T. Fan, G.Y. Li, L. Chi, J. Alloy. Compd. 678 (2016) 249–257.CrossRefGoogle Scholar
  10. [10]
    W.M. Jiang, Z.T. Fan, G.Y. Li, X.W. Liu, F.C. Liu, J. Alloy. Compd. 688 (2016) 742–751.CrossRefGoogle Scholar
  11. [11]
    D. Phelan, B.J. Xu, R. Dippenar, Mater. Sci. Eng. A 420 (2006) 144–149.CrossRefGoogle Scholar
  12. [12]
    H.P. Peng, X.P. Su, Z. Li, J.H. Wang, C.J. Wu, H. Tu, X.F. Lai, Surf. Coat. Technol. 206 (2012) 4329–4334.CrossRefGoogle Scholar
  13. [13]
    J.H. Selverian, A.R. Marder, M.R. Notis, Metall. Trans. A 19 (1988) 1193–1203.CrossRefGoogle Scholar
  14. [14]
    T.N. Vu, P. Volovitch, K. Ogle, Corros. Sci. 67 (2013) 42–49.CrossRefGoogle Scholar
  15. [15]
    G.X. Wu, J.Y. Zhang, Y.L. Ren, G.Y. Li, X.C. Wu, Q. Li, K.C. Chou, Metall. Mater. Trans. A 43 (2012) 2012–2017.CrossRefGoogle Scholar
  16. [16]
    G.X. Wu, J.Y. Zhang, Q. Li, K.C. Chou, X.C. Wu, Metall. Mater. Trans. B 43 (2012) 198–205.CrossRefGoogle Scholar
  17. [17]
    J. Lee, J. Park, S.H. Jeon, Metall. Mater. Trans. B 42 (2011) 1086–1089.CrossRefGoogle Scholar
  18. [18]
    M. Blumenau, M. Norden, F. Friedel, K. Peters, Surf. Coat. Technol. 205 (2011) 3319–3327.CrossRefGoogle Scholar
  19. [19]
    E.M. Bellhouse, A. Mertens, J.R. McDermid, Mater. Sci. Eng. A 463 (2007) 147–156.CrossRefGoogle Scholar
  20. [20]
    Z. Li, Research on the silicon reactivity and the influence of alloy elements on the hot-dip galvanizing, Central South University, Changsha, China, 2008.Google Scholar
  21. [21]
    S. Shimada, Y. Takada, J. Lee, T. Tanaka, ISIJ Int. 48 (2008) 1246–1250.CrossRefGoogle Scholar
  22. [22]
    Y. Takada, S. Shimada, J. Lee, M. Kurosaki, T. Tanaka, ISIJ Int. 49 (2009) 100–104.CrossRefGoogle Scholar
  23. [23]
    X.S. Li, S.I. Baek, C.S. Oh, S.J. Kim, Y.M. Kim, Scripta Mater. 57 (2007) 113–116.CrossRefGoogle Scholar
  24. [24]
    A. Ollivier-Leduc, M.L. Giorgi, D. Balloy, J.B. Guillot, Corros. Sci. 52 (2010) 2498–2504.CrossRefGoogle Scholar
  25. [25]
    I. Cvijović, I. Parezanović, M. Spiegel, Corros. Sci. 48 (2006) 980–993.CrossRefGoogle Scholar
  26. [26]
    D.J. Willis, F. Ilinca, F. Ajersch, N. Setargew, Prog. Comput. Fluid. Dyn. 7 (2007) 183–194.CrossRefGoogle Scholar
  27. [27]
    J. Strutzenberger, J. Faderl, Metall. Mater. Trans. A 29 (1998) 631–646.CrossRefGoogle Scholar
  28. [28]
    S.H. Hwang, J.H. Song, Y.S. Kim, Mater. Sci. Eng. A 390 (2005) 437–443.CrossRefGoogle Scholar
  29. [29]
    J.H. Selverian, M.R. Notis, A.R. Marder, J. Mater. Eng. 9 (1987) 133–140.CrossRefGoogle Scholar
  30. [30]
    W.S. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmin-Fetzer, W.A. Oates, Calphad 33 (2009) 328–342.CrossRefGoogle Scholar
  31. [31]
    PanAl-Aluminium Alloy Thermodynamic Database, in: CompuTherm, Madison, WI, USA, 2015.Google Scholar
  32. [32]
    B.J. Xu, D. Phelan, R. Dippenaar, Mater. Sci. Eng. A 473 (2008) 76–80.CrossRefGoogle Scholar
  33. [33]
    G.H. Awan, F. Ul Hasan, Mater. Sci. Eng. A 472 (2008) 157-165.Google Scholar
  34. [34]
    M. Yousaf, J. Iqbal, M. Ajmal, Mater. Charact. 62 (2011) 517–525.CrossRefGoogle Scholar
  35. [35]
    T. Sasaki, T. Yakou, K. Mochiduki, K. Ichinose, ISIJ Int. 45 (2005) 1887–1892.CrossRefGoogle Scholar
  36. [36]
    K. Bouche, F. Barbier, A. Coulet, Mater. Sci. Eng. A 249 (1998) 167–175.CrossRefGoogle Scholar
  37. [37]
    R. Richards, R. Jones, P. Clements, H. Clarke, Int. Mater. Rev. 39 (1994) 191–212.CrossRefGoogle Scholar
  38. [38]
    G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169–11186.CrossRefGoogle Scholar
  39. [39]
    J.P. Perdew, J. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46 (1992) 6671–6687.CrossRefGoogle Scholar
  40. [40]
    P.E. Blöchl, Phys. Rev. B 50 (1994) 17953–17979.CrossRefGoogle Scholar
  41. [41]
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188–5192.MathSciNetCrossRefGoogle Scholar
  42. [42]
    M.P. Levin, in Numerical Recipes in Fortran 90: the art of parallel scientific computing, E-Publishing: IEEE Computer Society, New York, USA, 1998, pp. 79.Google Scholar
  43. [43]
    H.M. Jin, Y. Li, H.L. Liu, P. Wu, Chem. Mater. 12 (2000) 1879–1883.CrossRefGoogle Scholar
  44. [44]
    P. Wu, H.M. Jin, H.L. Liu, Chem. Mater. 14 (2002) 832–837.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Wang-jun Peng
    • 1
    • 2
    • 3
  • Guang-xin Wu
    • 1
    • 2
    • 3
    Email author
  • Yi Cheng
    • 1
    • 2
    • 3
  • Jie-yu Zhang
    • 1
    • 2
    • 3
  1. 1.State Key Laboratory of Advanced Special SteelShanghai UniversityShanghaiChina
  2. 2.Shanghai Key Laboratory of Advanced FerrometallurgyShanghai UniversityShanghaiChina
  3. 3.School of Materials Science and EngineeringShanghai UniversityShanghaiChina

Personalised recommendations