Advertisement

Journal of Iron and Steel Research International

, Volume 26, Issue 11, pp 1228–1239 | Cite as

Microstructural evolution and constitutive models of 9CrMoCoB heat-resistant steel during high-temperature deformation

  • Chao-hang Jia
  • Chen-xi LiuEmail author
  • Yong-chang LiuEmail author
  • Chong Li
  • Hui-jun Li
Original Paper
  • 62 Downloads

Abstract

In order to research the hot deformation behavior of 9CrMoCoB heat-resistant steel, hot compression tests were performed over a wide range of temperatures from 850 to 1150 °C and strain rates from 0.01 to 10.00 s−1. The flow stress appears to increase with the decrease in deformation temperature and the increase in strain rate. The relationship between microstructural evolution and deformation parameters was studied, indicating that both low strain rate and high deformation temperature appear to promote the dynamic recrystallization, while excessively high temperature with low strain rate would result in the high non-uniformity of grain size. The experimental stress–strain data was applied to calculate the material constants involved in the Arrhenius-type constitutive model and the modified Zerilli-Armstrong (MZA) model, and feasibility of these two models was evaluated. The results show that the MZA model is more accurate to predict the high-temperature flow behavior of the experimental steel than the Arrhenius-type constitutive equation.

Keywords

9CrMoCoB steel Hot deformation behavior Dynamic recrystallization Arrhenius-type constitutive model Modified Zerilli-Armstrong model 

Notes

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Granted Nos. 51474156 and U1660201) and the National Magnetic Confinement Fusion Energy Research Project (Granted No. 2015GB119001) for grant and financial support.

References

  1. [1]
    S.H. Kim, H. Kim, N.J. Kim, Nature 518 (2015) 77–79.CrossRefGoogle Scholar
  2. [2]
    R. Subramanian, H. Tripathy, A.K. Rai, R.N. Hajra, S. Saibaba, T. Jayakumar, E.R. Kumar, J. Nucl. Mater. 459 (2015) 150–158.CrossRefGoogle Scholar
  3. [3]
    X.S. Zhou, Y.C. Liu, C.X. Liu, B.Q. Ning, Mater. Sci. Eng. A 608 (2014) 46–52.CrossRefGoogle Scholar
  4. [4]
    L. Helis, Y. Toda, T. Hara, H. Miyazaki, F. Abe, Mater. Sci. Eng. A 510–511 (2009) 88–94.CrossRefGoogle Scholar
  5. [5]
    X.S. Zhou, C.X. Liu, L.M. Yu, Y.C. Liu, H.J. Li, J. Mater. Sci. Technol. 31 (2015) 235–242.CrossRefGoogle Scholar
  6. [6]
    S.M. Abbasi, A. Shokuhfar, Mater. Lett. 61 (2007) 2523–2526.CrossRefGoogle Scholar
  7. [7]
    Y.C. Lin, M.S. Chen, J. Zhong, Mater. Lett. 62 (2008) 2132–2135.CrossRefGoogle Scholar
  8. [8]
    Y.C. Lin, Y.J. Liang, M.S. Chen, X.M. Chen, Appl. Phys. A 123 (2017) 68.CrossRefGoogle Scholar
  9. [9]
    H. Shin, J.B. Kim, J. Eng. Mater. Technol. 132 (2010) 021009.CrossRefGoogle Scholar
  10. [10]
    A. Rusinek, J.A. Rodriguez-Martinez, A. Arias, Int. J. Mech. Sci. 52 (2010) 120–135.CrossRefGoogle Scholar
  11. [11]
    L. Meng, M.H. Wang, X. Liu, F.L. Wang, Appl. Phys. A 122 (2016) 11.Google Scholar
  12. [12]
    C.M. Sellars, W.J. McTegart, Acta Metall. 14 (1966) 1136–1138.CrossRefGoogle Scholar
  13. [13]
    H.Y. Li, D.D. Wei, J.D. Hu, Y.H. Li, S.L. Chen, Comput. Mater. Sci. 53 (2012) 425–430.CrossRefGoogle Scholar
  14. [14]
    N. Liu, Z.D. Liu, X.K. He, Z.Q. Yang, L.T. Ma, J. Iron Steel Res. Int. 23 (2016) 1342–1348.CrossRefGoogle Scholar
  15. [15]
    J. Dong, C. Li, C.X. Liu, Y. Huang, L.M. Yu, H.J. Li, Y.C. Liu, J. Mater. Res. 32 (2017) 3777–3787.CrossRefGoogle Scholar
  16. [16]
    Y. Wu, Y. Liu, C. Li, X. Xia, Y. Huang, H. Li, H. Wang, J. Alloy. Compd. 712 (2017) 687–695.CrossRefGoogle Scholar
  17. [17]
    X. Shi, X.F. An, C.H. Duan, J.G. Song, M.H. Zhao, J. Wang, J. Iron Steel Res. Int. 24 (2017) 625–633.CrossRefGoogle Scholar
  18. [18]
    Y. Wu, Y. Liu, C. Li, X. Xia, J. Wu, H. Li, J. Alloy. Compd. 771 (2019) 526–533.CrossRefGoogle Scholar
  19. [19]
    H. Zhang, H.J. Li, Q.Y. Guo, Y.C. Liu, L.M. Yu, J. Mater. Res. 31 (2016) 1764–1772.CrossRefGoogle Scholar
  20. [20]
    J. Li, F.G. Li, J. Cai, R.T. Wang, Z.W. Yuan, G.L. Ji, Comput. Mater. Sci. 71 (2013) 56–65.CrossRefGoogle Scholar
  21. [21]
    W.S. Lee, C.Y. Liu, Metall. Mater. Trans. A 36 (2005) 3175–3186.CrossRefGoogle Scholar
  22. [22]
    D. Samantaray, S. Mandal, U. Borah, A.K. Bhaduri, P.V. Sivaprasad, Mater. Sci. Eng. A 526 (2009) 1–6.CrossRefGoogle Scholar
  23. [23]
    D. Samantaray, S. Mandal, A.K. Bhaduri, Comput. Mater. Sci. 47 (2009) 568–576.CrossRefGoogle Scholar
  24. [24]
    H.Y. Li, X.F. Wang, D.D. Wei, J.D. Hu, Y.H. Li, Mater. Sci. Eng. A 536 (2012) 216–222.CrossRefGoogle Scholar
  25. [25]
    Y.C. Lin, F.Q. Nong, X.M. Chen, D.D. Chen, M.S. Chen, Vacuum 137 (2017) 104–114.CrossRefGoogle Scholar
  26. [26]
    J. Chen, Y. Liu, C. Liu, X. Zhou, H. Li, J. Mater. Res. 32 (2017) 1376–1385.CrossRefGoogle Scholar
  27. [27]
    Y.C. Lin, M.S. Chen, J. Zhong, Mech. Res. Commun. 35 (2008) 142–150.CrossRefGoogle Scholar
  28. [28]
    Y.C. Lin, X.M. Chen, Mater. Des. 32 (2011) 1733–1759.CrossRefGoogle Scholar
  29. [29]
    S.S.S. Kumar, T. Raghu, P.P. Bhattacharjee, G.A. Rao, U. Borah, J. Alloy. Compd. 681 (2016) 28–42.CrossRefGoogle Scholar
  30. [30]
    J.R. Li, C. Gong, L. Chen, H. Zuo, Y.Z. Liu, Acta Metall. Sin. 50 (2014) 1063–1070.Google Scholar
  31. [31]
    P. Yan, Z.D. Liu, W. Liu, H.S. Bao, Y.Q. Weng, J. Iron Steel Res. Int. 20 (2013) 73–79.CrossRefGoogle Scholar
  32. [32]
    G.M. Zhang, Z.J. Zhou, H.Y. Sun, L. Zou, M. Wang, S.F. Li, J. Nucl. Mater. 455 (2014) 139–144.CrossRefGoogle Scholar
  33. [33]
    H.J. McQueen, N.D. Ryan, Mater. Sci. Eng. A 322 (2002) 43–63.CrossRefGoogle Scholar
  34. [34]
    D.N. Zou, K. Wu, Y. Han, W. Zhang, B. Cheng, G.J. Qiao, Mater. Des. 51 (2013) 975–982.CrossRefGoogle Scholar
  35. [35]
    A, He, L. Chen, S. Hu, C. Wang, L.X. Huangfu, Mater. Des. 46 (2013) 54–60.CrossRefGoogle Scholar
  36. [36]
    M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, A. Abolhasani, Mater. Des. 32 (2011) 4955–4960.CrossRefGoogle Scholar
  37. [37]
    Q. Lu, S. van der Zwaag, W. Xu, J. Mater. Sci. Technol. 33 (2017) 1577–1581.CrossRefGoogle Scholar
  38. [38]
    H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, Metall. Mater. Trans. A 43 (2012) 108–123.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  1. 1.Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science and EngineeringTianjin UniversityTianjinChina

Personalised recommendations