Journal of Iron and Steel Research International

, Volume 26, Issue 9, pp 1011–1021 | Cite as

Hydrogen embrittlement of a microalloyed bainitic forging steel

  • Wei-jun HuiEmail author
  • Zhan-hua Wang
  • Zhi-bao Xu
  • Yong-jian Zhang
  • Xiao-li Zhao
Original Paper


The hydrogen embrittlement (HE) of a novel microalloyed bainitic forging steel with a strength level of 1100 MPa was evaluated using electrochemical charging and slow strain rate tensile test method with notched round bar specimens. The results show that the susceptibility to HE of the as-forged bainitic forging steel is notably higher than that of the quenched and tempered (Q&T) steel at same strength level, which is ascribed primarily to the presence of a relatively high amount of large blocky martensite/austenite (M/A) constituents of the former. It was found that low-temperature tempering treatment at 200 °C could significantly alleviate the susceptibility to HE by a relative decrease of ~ 35% of the as-forged bainitic forging steel at no expense of strength and ductility, though its resistance to HE is still a little lower than that of the Q&T steel. Thus, it is suggested that efforts concerning refining of the large blocky M/A through optimizing chemical composition and processing route could help to further alleviate the susceptibility to HE of the tested bainitic forging steel.


Hydrogen embrittlement Bainitic forging steel Microstructure Granular bainite M/A constituent 



This work was financially supported by the National Key Research and Development Program of China (Grant No. 2016YFB0300100).


  1. [1]
    T. Michler, J. Naumann, Int. J. Hydrogen Energy 35 (2010) 821–832.CrossRefGoogle Scholar
  2. [2]
    T. Depover, D. Pérez Escobar, E. Wallaert, Z. Zermout, K. Verbeken, Int. J. Hydrogen Energy 39 (2014) 4647–4656.CrossRefGoogle Scholar
  3. [3]
    D.J. Naylor, Ironmak. Steelmak. 16 (1989) 246–252.Google Scholar
  4. [4]
    S.L. Chen, W.J. Hui, L.H. Wang, G.W. Dai, H. Dong, Iron and Steel 49 (2014) No. 6, 1–7.Google Scholar
  5. [5]
    Y. Luo, J.M. Peng, H.B. Wang, X.C. Wu, Mater. Sci. Eng. A 527 (2010) 3433–3437.CrossRefGoogle Scholar
  6. [6]
    A.R. Khodabandeh, M. Jahazi, S. Yue, P. Boocher, ISIJ Int. 45 (2005) 272–280.CrossRefGoogle Scholar
  7. [7]
    D.K. Matlock, G. Krauss, J.G. Speer, J. Mater. Process. Technol. 117 (2001) 324–328.CrossRefGoogle Scholar
  8. [8]
    B. Buchmayr, Mater. Sci. Technol. 32 (2016) 517–522.CrossRefGoogle Scholar
  9. [9]
    T. Sourmail, V. Smanio, Mater. Sci. Eng. A 582 (2013) 257–261.CrossRefGoogle Scholar
  10. [10]
    C. Keul, V. Wirths, W. Bleck, Arch. Civ. Mech. Eng. 12 (2012) 119–125.CrossRefGoogle Scholar
  11. [11]
    H. Wu, C. Liu, Z.B. Zhao, Y. Zhao, S.Z. Zhu, Y.X. Liu, S. Bhole, Mater. Des. 27 (2006) 651–656.CrossRefGoogle Scholar
  12. [12]
    J.K. Zhang, L. Dong, Y. Xin, G.R. Guo, Mater. Mech. Eng. 27 (2003) No. 7, 42–44.Google Scholar
  13. [13]
    H. Takada, Tetsu-to-Hagané 88 (2002) 534–538.CrossRefGoogle Scholar
  14. [14]
    T. Shiraga, Corros. Eng. 60 (2011) 188–194.CrossRefGoogle Scholar
  15. [15]
    W.J. Hui, Y.J. Zhang, X.L. Zhao, C.W. Shao, K.Z. Wang, W. Sun, T.R. Yu, Mater. Sci. Eng. A 662 (2016) 528–536.CrossRefGoogle Scholar
  16. [16]
    N. Nanninga, J. Grochowsi, L. Heldt, K. Rundman, Corros. Sci. 52 (2010) 1237–1246.CrossRefGoogle Scholar
  17. [17]
    Y. Kimura, T. Inoue, E. Akiyama, Mater. Sci. Eng. A 703 (2017) 503–512.CrossRefGoogle Scholar
  18. [18]
    Z.B. Xu, W.J. Hui, Z.H. Wang, Y.J. Zhang, X.L. Zhao, X.M. Zhao, J. Iron Steel Res. Int. 24 (2017) 1085–1094.CrossRefGoogle Scholar
  19. [19]
    W.J. Hui Y.J. Zhang, X.L. Zhao, C. Zhou, K.Z. Wang, W. Sun, Mater. Sci. Eng. A 651 (2016) 311–320.CrossRefGoogle Scholar
  20. [20]
    K.K. Wang, Z.L. Tan, G.H. Gao, X.L. Gui, R.D.K. Misra, B.Z. Bai, Mater. Sci. Eng. A 662 (2016) 162–168.CrossRefGoogle Scholar
  21. [21]
    W.J. Hui, Y.J. Zhang, X.L. Zhao, N. Xiao, F.Z. Hu, Int. J. Fatigue 91 (2016) 232–241.CrossRefGoogle Scholar
  22. [22]
    H.F. Lan, L.X. Du, R.D.K. Misra, Mater. Sci. Eng. A 611 (2014) 194–200.CrossRefGoogle Scholar
  23. [23]
    F.G. Wei, T. Hara, T. Tsuchida, K. Tsuzaki, ISIJ Int. 43 (2003) 539–547.CrossRefGoogle Scholar
  24. [24]
    M. Nagumo, ISIJ Int. 41 (2001) 590–598.CrossRefGoogle Scholar
  25. [25]
    G. Lovicu, M. Bottazzi, F. D’aiuto, M. De Sanctis, A. Dimatteo, C. Santus, R. Valentini, Metall. Mater. Trans. A 43 (2012) 4075–4087.CrossRefGoogle Scholar
  26. [26]
    B.A. Szost, R.H. Vegter, P.E.J. Rivera-Díaz-Del-Castillo, Metall. Mater. Trans. A 44 (2013) 4542–4550.CrossRefGoogle Scholar
  27. [27]
    M.J. Peet, T. Hojo, Metall. Mater. Trans. A 47 (2016) 718–725.CrossRefGoogle Scholar
  28. [28]
    T. Hojo, K.I. Sugimoto, Y. Mukai, S. Ikeda, ISIJ Int. 48 (2008) 824–829.CrossRefGoogle Scholar
  29. [29]
    W.Y. Chu, L.J. Qiao, J.X. Li, Y.J. Su, Y. Yan, Y. Bai, X.C. Ren, H.Y. Huang, Hydrogen embrittlement and stress corrosion cracking, Science Press, Beijing, China, 2013.Google Scholar
  30. [30]
    S.L.I. Chan, H.L. Lee, J.R. Yang, Metall. Trans. A 22 (1991) 2579–2586.CrossRefGoogle Scholar
  31. [31]
    X.B. Shi, W. Yan, W. Wang, L.Y. Zhao, Y.Y. Shan, K. Yang, Acta Metall. Sin. (Engl. Lett.) 28 (2015) 799–808.CrossRefGoogle Scholar
  32. [32]
    R. Kerr, F. Solana, I.M. Bernstein, A.W. Thompson, Metall. Trans. A 18 (1987) 1011–1022.CrossRefGoogle Scholar
  33. [33]
    J.M. Tartaglia, K.A. Lazzari, G.P. Hui, K.L. Hayrynen, Metall. Mater. Trans. A 39 (2008) 559–576.CrossRefGoogle Scholar
  34. [34]
    F.C. Zhang, C.L. Zhang, B. Lv, T.S. Wang, M. Li, M. Zhang, Eng. Fail. Anal. 16 (2009) 1461–1467.CrossRefGoogle Scholar
  35. [35]
    M.A. Arafin, J.A. Szpunar, Mater. Sci. Eng. A 528 (2011) 4927–4940.CrossRefGoogle Scholar
  36. [36]
    C.L. Zhang, B. Lv, F.C. Zhang, Z.G. Yan, R. Dan, L.H. Qian, Mater. Sci. Eng. A 547 (2012) 99–103.CrossRefGoogle Scholar
  37. [37]
    Y.G. Li, F.C. Zhang, C. Chen, B. Lv, Z.N. Yang, C.L. Zheng, Mater. Sci. Eng. A 651 (2016) 945–950.CrossRefGoogle Scholar
  38. [38]
    D.H. Shim, T. Lee, J. Lee, H.J. Lee, J.Y. Yoo, C.S. Lee, Mater. Sci. Eng. A 700 (2017) 473–480.CrossRefGoogle Scholar
  39. [39]
    G.F. Li, R.G. Wu, T.C. Lei, Metall. Trans. A 23 (1992) 2879–2885.CrossRefGoogle Scholar
  40. [40]
    Y. Nakatani, T. Higashi, K. Yamada, Fatigue Fract. Eng. Mater. Struct. 22 (1999) 393–398.CrossRefGoogle Scholar
  41. [41]
    F. Sarıoğlu, Mater. Sci. Eng. A 315 (2001) 98–102.CrossRefGoogle Scholar
  42. [42]
    S.Z. Han, W.J. Hui, R.P. Liu, C.W. Shao, Trans. Mater. Heat Treatment 35 (2014) No. 7, 114–119.Google Scholar
  43. [43]
    X. Zhu, K. Zhang, W. Li, X.J. Jin, Mater. Sci. Eng. A 658 (2016) 400–408.CrossRefGoogle Scholar
  44. [44]
    X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, L. Wang, Scripta Mater. 68 (2013) 321–324.CrossRefGoogle Scholar
  45. [45]
    J.Y. Ryu, Y.S. Chun, C.S. Lee, H.K.D.H. Bhadeshia, D.W. Suh, Acta Mater. 60 (2012) 4085–4092.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Wei-jun Hui
    • 1
    Email author
  • Zhan-hua Wang
    • 1
  • Zhi-bao Xu
    • 2
  • Yong-jian Zhang
    • 1
  • Xiao-li Zhao
    • 1
  1. 1.Materials Science and Engineering Research Center, School of Mechanical, Electronic and Control EngineeringBeijing Jiaotong UniversityBeijingChina
  2. 2.Yantai Branch of China North Industries Group Corporation No. 52 Institute Co., Ltd.YantaiChina

Personalised recommendations