Journal of Iron and Steel Research International

, Volume 26, Issue 11, pp 1209–1218 | Cite as

Effect of volume fraction and mechanical stability of austenite on ductility of medium Mn steel

  • Si-lian Chen
  • Zhao-xi Cao
  • Chang Wang
  • Chong-xiang Huang
  • Dirk Ponge
  • Wen-quan CaoEmail author
Original Paper


A hot-rolled medium Mn (0.2C5Mn) steel is annealed at 650 °C to produce an ultrafine-grained duplex microstructure with different austenite volume fractions by austenite reverted transformation (ART) annealing, and the orientation relationship strictly obeys K–S orientation relationship before deformation. Tensile tests are carried out in a temperature range from − 196 to 400 °C to examine the effects of the austenite volume fraction and the deformation temperature on the tensile properties and the austenite stability. Microstructural observations reveal that the metastable austenite gradually transformed into α-martensite, which is controlled by the deformation strain, the temperature and the austenite volume fraction. Both strain hardening behavior and ductility of the studied steel are dependent on austenite volume fraction and deformation temperature significantly. The stress–strain curves of ART-annealed 0.2C5Mn steel assume an S shape and a very large work hardening rate of about 10 GPa is obtained at liquid nitrogen deformation temperature. Based on the experimental data, a quantitative relation is proposed to describe the ductility dependence on both the austenite volume fraction and its mechanical stability.


TRIP effect Ductility Phase transformation Austenite volume fraction Mechanical stability 



This research was supported by both National Natural Science Foundation of China (NSFC, Nos. 51871062, 51371057 and 11672195) and MNSF of Beijing (No. 2182088). Chong-xiang Huang acknowledged Sichuan Youth Science and Technology Foundation (No. 2016JQ0047).


  1. [1]
    V.F. Zackay, E.R. Parker, D. Fahr, R. Busch, ASM Trans. Quart 60 (1967) 252–259.Google Scholar
  2. [2]
    W. Bleck, JOM 48 (1996) 26–30.Google Scholar
  3. [3]
    G. Formmeyer, U. Brux, P. Neumann, ISIJ Int. 43 (2003) 438–446.Google Scholar
  4. [4]
    B.C. De Cooman, Curr. Opin. Solid State Mater. Sci. 8 (2004) 285–303.Google Scholar
  5. [5]
    E.J. Seo, L. Cho, B.C. De Cooman, Metall. Mater. Trans. A 45 (2014) 4022–4037.Google Scholar
  6. [6]
    T.B. Hilditch, I.B. Timokhina, L.T. Robertson, E.V. Pereloma, P.D. Hodgson, Metall. Mater. Trans. A 40 (2009) 342–353.Google Scholar
  7. [7]
    O. Graessel, L. Krüger, G. Frommeyer, L.W. Meyer, Int. J. Plast. 16 (2000) 1391–1409.Google Scholar
  8. [8]
    O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier, Curr. Opin. Solid State Mater. Sci. 15 (2011) 141–168.Google Scholar
  9. [9]
    W.Q. Cao, J. Shi, C. Wang, C.Y. Wang, L. Xu, M.Q. Wang, Y.Q. Weng, H. Dong, in: The 3rd Generation Automobile Steels Presenting with Ultrahigh Strength and High Ductility. Advanced Steel: The Recent Scenario in Steel Science and Technology, Metallurgical Industry Press, Beijing, China, 2011, pp. 209–227.Google Scholar
  10. [10]
    D.W. Suh, S.J. Kim, Scripta Mater. 126 (2017) 63–67.Google Scholar
  11. [11]
    I.B. Timokhina, P.D. Hodgson, E.V. Pereloma, Metall. Mater. Trans. A 35 (2004) 2331–2341.Google Scholar
  12. [12]
    J. Shi, X.J. Sun, M.Q. Wang, W.J. Hui, H. Dong, W.Q. Cao, Scripta Mater. 63 (2010) 815–818.Google Scholar
  13. [13]
    C. Herrera, D. Ponge, D. Raabe, Acta Mater. 59 (2011) 4653–4664.Google Scholar
  14. [14]
    H.W. Luo, J. Shi, C. Wang, W.Q. Cao, X.J. Sun, H. Dong, Acta Mater. 59 (2011) 4002–4014.Google Scholar
  15. [15]
    G. Reisner, E.A. Werner, P. Kerschbaummayr, I. Papst, F.D. Fischer, JOM 49 (1997) 62–65.Google Scholar
  16. [16]
    S. Zaefferer, J. Ohlert, W. Bleck, Acta Mater. 52 (2004) 2765–2778.Google Scholar
  17. [17]
    R. Blonde, E. Jimenez-Melero, L. Zhao, J.P. Wright, E. Bruck, S. van der Zwaag, N.H. van Dijk, Acta Mater. 60 (2011) 565–577.Google Scholar
  18. [18]
    O. Bouaziz, H. Zurob, M.X. Huang, Steel Res. Int. 84 (2013) 937–947.Google Scholar
  19. [19]
    S. Vercammen, B. Blanpain, B.C. De Cooman, P. Wollants, Acta Mater. 52 (2004) 2005–2012.Google Scholar
  20. [20]
    I. Gutierrez-Urrutia, D. Raabe, Acta Mater. 59 (2011) 6449-6462.Google Scholar
  21. [21]
    S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, Mater. Sci. Eng. A 387-389 (2004) 158–162.Google Scholar
  22. [22]
    S. Curtze, V.T. Kuokkala, Acta Mater. 58 (2010) 5129–5141.Google Scholar
  23. [23]
    D.K. Matlock, J.G. Speer, in: A. Haldar, S. Suwas, D. Bhattacharjee (Eds.), Third Generation of AHSS: Microstructure Design Concepts, Microstructure and Texture in Steels, Springer, London, UK, 2009, pp. 185–205.Google Scholar
  24. [24]
    C. Wang, J. Shi, C.Y. Wang, W.J. Hui, M.Q. Wang, H. Dong, W.Q. Cao, ISIJ Int. 51 (2011) 651–656.Google Scholar
  25. [25]
    Y.K. Lee, J. Han, Mater. Sci. Technol. 31 (2015) 843–856.Google Scholar
  26. [26]
    J. Chiang, B. Lawrence, J.D. Boy, Mater. Sci. Eng. A 528 (2011) 4516–4521.Google Scholar
  27. [27]
    P.J. Jacques, F. Delannay, J. Ladriere, Metall. Mater. Trans. A 32 (2001) 2759–2768.Google Scholar
  28. [28]
    P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, D.K. Matlock, Metall. Mater. Trans. A 42 (2011) 3691–3702.Google Scholar
  29. [29]
    Z.H. Cai, H. Ding, R.D.K. Misra, Z.Y. Ying, Acta Mater. 84 (2015) 229–236.Google Scholar
  30. [30]
    G.N. Haidemenopoulos, A.N. Vasilakos, Steel Res. Int. 67 (1996) 513–519.Google Scholar
  31. [31]
    A.N. Vasilakos, K. Pagamantellos, G.N. Haidemenopoulos, W. Bleck, Steel Res. Int. 70 (1999) 466–471.Google Scholar
  32. [32]
    W.Q. Cao, C. Wang, C.Y. Wang, J. Shi, M.Q. Wang, H. Dong, Y.Q. Weng, Sci. China Technol. Sci. 55 (2012) 1814–1822.Google Scholar
  33. [33]
    C. Wang, W.Q. Cao, J. Shi, C.X. Huang, H. Dong, Mater. Sci. Eng. A 562 (2013) 89–95.Google Scholar
  34. [34]
    K. Sugimoto, N. Usui, M. Kobayashi, S. Hashimoto, ISIJ Int. 32 (1992) 1311–1318.Google Scholar
  35. [35]
    M.Y. Sherif, C. Garcia Mateo, T. Sourmail, Mater. Sci. Technol. 20 (2004) 319–322.Google Scholar
  36. [36]
    E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, S. van der Zwaag, Acta Mater. 55 (2007) 6713–6723.Google Scholar
  37. [37]
    S. Lee, S.J. Lee, B.C. De Cooman, Scripta Mater. 65 (2011) 225–228.Google Scholar
  38. [38]
    M. Kuzmina, D. Ponge, D. Raabe, Acta Mater. 86 (2015) 182–192.Google Scholar
  39. [39]
    H. Lee, M.C. Jo, S.S. Sohn, A. Zargaran, J.H. Ryu, N.J. Kim, S. Lee, Acta Mater. 1476 (2018) 247–260.Google Scholar
  40. [40]
    P. Jacques, Q. Furnemont, A. Mertens, F. Delannay, Philos. Mag. A 81 (2001) 1789–1812.Google Scholar
  41. [41]
    S. Curtze, V.T. Kuokkala, M. Hokka, P. Peura, Mater. Sci. Eng. A 507 (2009) 124–131.Google Scholar
  42. [42]
    M.R. Berrahmoune, S. Berveiller, K. Inal, A. Moulin, E. Patoor, Mater. Sci. Eng. A 378 (2004) 304–307.Google Scholar
  43. [43]
    A. Perlade, O. Bouaziz, Q. Furnemont, Mater. Sci. Eng. A 356 (2003) 145–152.Google Scholar
  44. [44]
    G. Ghosh, G.B. Olson, Acta Metall. Mater. 42 (1994) 3361–3370.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Si-lian Chen
    • 1
  • Zhao-xi Cao
    • 2
  • Chang Wang
    • 1
  • Chong-xiang Huang
    • 3
  • Dirk Ponge
    • 4
  • Wen-quan Cao
    • 1
    Email author
  1. 1.Central Iron and Steel Research Institute (CISRI)BeijingChina
  2. 2.Science FacultyUniversity of SydneySydneyAustralia
  3. 3.School of Aeronautics and AstronauticsSichuan UniversityChengduChina
  4. 4.Max-Planck-Institute for Iron ResearchDuesseldorfGermany

Personalised recommendations