Advertisement

Comparative cyclic oxidation behaviour and effect of oxides on hardness of wear resistance coating alloys T-401 and T-900

  • Abdul Rehman
  • Yang Liang
  • Mohammad Hassan Shirani Bidabadi
  • Zheng Yu
  • Chi Zhang
  • Hao Chen
  • Zhi-gang YangEmail author
Original Paper
  • 17 Downloads

Abstract

The investigated alloys are newly developed Tribaloy alloys with enhanced crack and oxidation resistance over the traditional Tribaloy alloys. The cyclic oxidation performance and effects of complex oxides on the hardness of cobalt-based Tribaloy alloys T-401 (hypoeutectic) and T-900 (hypereutectic) were assessed. The results showed that T-900 alloy has a lower oxidation rate as compared to T-401 alloy at 800 and 1000 °C, which attributed to the formation of dense continuous Cr2O3 layer with an upper thinner continuous layer of CoCr2O4 and NiCr2O4 oxides. At 1000 °C, T-401 alloy exhibited poor oxidation resistance due to severe spallation after 3 cycles (45 h). After oxidation, T-900 alloy exhibits 98% and 18% lower mass gain than T-401 alloy at 1000 and 800 °C, respectively. For T-900 alloy, relationship between mass gain and thickness of oxide layer revealed that mass will increase 0.162 mg/cm2 for every 1-µm increase in the oxides thickness. Internal SiO2 oxide was observed at 800 and 1000 °C for both alloys. However, the extent of internal Si oxides increased with increasing oxidation temperature from 800 to 1000 °C. Consequently, internal oxidation of Si led to the formation of Laves phase-depleted region near oxide/alloy interface in T-900 alloy at 1000 °C. Thus, hardness of T-900 alloy decreased from 618 to 392 HV beneath the oxide/alloy interface at 1000 °C, whereas hardness of T-900 and T-401 alloys after cyclic oxidation test at 800 °C increased from 618 to 855 and 519 to 685 HV, respectively.

Keywords

Tribaloy Hypoeutectic alloy Hypereutectic alloy Cyclic oxidation Depletion Nitride Hardness 

Notes

Acknowledgements

This work was supported by Tsinghua University Initiative Scientific Research Program and National Magnetic Confinement Fusion Energy Research Project of China (Grant No. 2015GB118001).

References

  1. [1]
    G. Bolelli, L. Lusvarghi, J. Therm. Spray Technol. 15 (2006) 802–810.CrossRefGoogle Scholar
  2. [2]
    G. Bouquet, B. Dubois, Scripta Metall. 12 (1978) 1079–1081.CrossRefGoogle Scholar
  3. [3]
    A. Halstead, R.D. Rawlings, Mater. Sci. 18 (1984) 491–500.Google Scholar
  4. [4]
    K. Jiang, R. Liu, K. Chen, M. Liang, Wear 307 (2013) 22–27.CrossRefGoogle Scholar
  5. [5]
    M.J. Tobar, J.M. Amado, C. Álvarez, A. García, A. Varela, A. Yáñez, Surf. Coat. Technol. 202 (2008) 2297–2301.CrossRefGoogle Scholar
  6. [6]
    R.D. Schmidt, D.P. Ferriss, Wear 32 (1975) 279–289.CrossRefGoogle Scholar
  7. [7]
    M.X. Yao, J.B.C. Wu, S. Yick, Y. Xie, R. Liu, Mater. Sci. Eng. A 435–436 (2006) 78–83.CrossRefGoogle Scholar
  8. [8]
    S. Nsoesie, R. Liu, K. Jiang, M. Liang, Int. J. Mater. Sci. Mech. Eng. 2 (2013) No. 3, 48–56.Google Scholar
  9. [9]
    H.E. Evans, D.A. Hilton, R.A. Holm, S.J. Webster, Oxid. Met. 19 (1983) 1–18.CrossRefGoogle Scholar
  10. [10]
    A. Halstead, R.D. Rawlings, J. Mater. Sci. 20 (1985) 1248–1256.CrossRefGoogle Scholar
  11. [11]
    P.Y. Hou, J. Am. Ceram. Soc. 86 (2003) 660–668.CrossRefGoogle Scholar
  12. [12]
    P.Y. Hou, Chin. Soc. Corros. Protect. 29 (2009) 277–285.Google Scholar
  13. [13]
    P.Y. Hou, J. Stringer, Mater. Sci. Eng. A 202 (1995) 1–10.CrossRefGoogle Scholar
  14. [14]
    R. Prescott, M.J. Graham, Oxid. Met. 38 (1992) 233–254.CrossRefGoogle Scholar
  15. [15]
    Y. Zhang, Z. Yang, C. Zhang, H. Lan, Chin. J. Aeronaut. 23 (2010) 370–376.CrossRefGoogle Scholar
  16. [16]
    X.H. Zhang, C. Zhang, Y.D. Zhang, S. Salam, H.F. Wang, Z.G. Yang, Corros. Sci. 88 (2014) 405–415.CrossRefGoogle Scholar
  17. [17]
    Y.D. Zhang, C. Zhang, H. Lan, P.Y. Hou, Z.G. Yang, Corros. Sci. 53 (2011) 1035–1043.CrossRefGoogle Scholar
  18. [18]
    I.A. Inman, P.S. Datta, H.L. Du, K.C. Kübel, P.D. Wood, F.T. Mahi, B. Cottis, High temperature tribocorrosion, Elsevier Science, UK, 2010, pp. 331–398.Google Scholar
  19. [19]
    F.H. Stott, G.C. Wood, J. Stringer, Oxid. Met. 44 (1995) 113–145.CrossRefGoogle Scholar
  20. [20]
    D.L. Douglass, Oxid. Met. 44 (1995) 81–111.CrossRefGoogle Scholar
  21. [21]
    H. Guleryuz, H. Cimenoglu, Surf. Coat. Technol. 192 (2005) 164–170.CrossRefGoogle Scholar
  22. [22]
    F. Borgioli, E. Galvanetto, F.P. Galliano, T. Bacci, Surf. Coat. Technol. 141 (2001) 103–107.CrossRefGoogle Scholar
  23. [23]
    D.B. Wei, P.Z. Zhang, Z.J. Yao, J.T. Zhou, X.F. Wei, P. Zhou, Appl. Surf. Sci. 261 (2012) 800–806.CrossRefGoogle Scholar
  24. [24]
    E. Airiskallio, E. Nurmi, M.H. Heinonen, I.J. Väyrynen, K. Kokko, M. Ropo, M.P.J. Punkkinen, H. Pitkänen, M. Alatalo, J. Kollár, B. Johansson, L. Vitos, Corros. Sci. 52 (2010) 3394–3404.CrossRefGoogle Scholar
  25. [25]
    H. Buscail, F. Riffard, C. Issartel, S. Perrier, Corros. Eng. Sci. Technol. 47 (2012) 404–410.CrossRefGoogle Scholar
  26. [26]
    B.A. Pint, Oxid. Met. 48 (1997) 303–328.CrossRefGoogle Scholar
  27. [27]
    J.C. Pivin, D. Delaunay, C. Roques-Carmes, A.M. Huntz, P. Lacombe, Corros. Sci. 20 (1980) 351–373.CrossRefGoogle Scholar
  28. [28]
    A. Ul-Hamid, Corros. Sci. 46 (2004) 27–36.CrossRefGoogle Scholar
  29. [29]
    X. Pang, K. Gao, H. Yang, L. Qiao, Y. Wang, A.A. Volinsky, Adv. Eng. Mater. 9 (2007) 594–599.CrossRefGoogle Scholar
  30. [30]
    S. Han, D.J. Young, Oxid. Met. 55 (2001) 223–242.CrossRefGoogle Scholar
  31. [31]
    C.A. Snavely, C.L. Faust, J. Electrochem. Soc. 97 (1950) 99–108.CrossRefGoogle Scholar
  32. [32]
    X.G. Zheng, D.J. Young, Mater. Sci. Forum 251–254 (1997) 567–574.CrossRefGoogle Scholar
  33. [33]
    J.C. Salabura, D. Monceau, Mater. Sci. Forum 461–464 (2004) 689–696.CrossRefGoogle Scholar
  34. [34]
    L.J. Zhou, F. Wang, C. Yang, W.W. Zhang, Z.Y. Xiao, Y.Y. Li, Mater. Des. 78 (2015) 25–32.CrossRefGoogle Scholar
  35. [35]
    E.M. do Nascimento, L.M. do Amaral, A.S.C.M. D'Oliveira, Surf. Coat. Technol. 332 (2017) 408–413.CrossRefGoogle Scholar
  36. [36]
    S.X. Liang, L.X. Yin, J.X. Li, M.Z. Ma, R.P. Liu, Mater. Des. 86 (2015) 458–463.CrossRefGoogle Scholar
  37. [37]
    V. Pawar, C. Weaver, S. Jani, Appl. Surf. Sci. 257 (2011) 6118–6124.CrossRefGoogle Scholar
  38. [38]
    R. Liu, J. Yao, Q. Zhang, M.X. Yao, R. Collier, J. Eng. Mater. Technol. 138 (2016) 041017.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Abdul Rehman
    • 1
  • Yang Liang
    • 1
  • Mohammad Hassan Shirani Bidabadi
    • 1
  • Zheng Yu
    • 1
  • Chi Zhang
    • 1
  • Hao Chen
    • 1
  • Zhi-gang Yang
    • 1
    Email author
  1. 1.Key Laboratory of Advanced Materials, Ministry of Education, School of Materials Science and Engineering, Collaborative Innovation Center of Advanced Nuclear Energy TechnologyTsinghua UniversityBeijingChina

Personalised recommendations