Advertisement

Creep behavior and damage evolution of T92/Super304H dissimilar weld joints

  • Xiao-wei Zhai
  • Jin-feng Du
  • Lin-ping Li
  • Chao Zhou
  • Zheng ZhangEmail author
Original Paper
  • 3 Downloads

Abstract

Creep tests of T92/Super304H joints were performed at 923 K under the stress of 85–165 MPa. Microstructure evolution was characterized by light microscopy, scanning electron microcopy and transmission electron microscopy to probe the relationship between creep performance deterioration and microstructure evolution. Results showed that for all the creep tests, failure occurred at fine-grained heat-affected zone of T92, and the joints have lower creep strength than the base metal T92. However, as the stress increased from 85 to 165 MPa, the creep fracture changed from a mixed mode, i.e., intergranular fracture in the center part and transgranular fracture in the edge part to total transgranular fracture. The longer the creep life, the greater is the proportion of the intergranular fracture. The M23C6 coarsened and the Laves phase precipitated along grain boundaries during long-term creep. Vacancies nucleate and propagate at the interface between coarse M23C6, Laves phase and matrix. Finally, cracks forming along grain boundaries are responsible for intergranular fracture.

Keywords

Dissimilar steel Weld joint Creep Laves phase M23C6 

Notes

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2016YFC081902).

References

  1. [1]
    M.Y. Kim, S.C. Kwak, I.S. Choi, Y.K. Lee, J.Y. Suh, E. Fleury, W.S. Jung, T.H. Son, Mater. Charact. 97 (2014) 161–168.CrossRefGoogle Scholar
  2. [2]
    J. Cao, Y. Gong, Z.G. Yang, Mater. Sci. Eng. A 528 (2011) 6103–6111.CrossRefGoogle Scholar
  3. [3]
    K. Shinozaki, D. Li, H. Kuroki, H. Harada, K. Ohishi, T. Sato, Sci. Technol. Weld. Joining 8 (2003) 289–295.CrossRefGoogle Scholar
  4. [4]
    L. Falat, M. Svoboda, A. Výrostková, I. Petryshynets, M. Sopko, Mater. Charact. 72 (2012) 15–23.CrossRefGoogle Scholar
  5. [5]
    L.Y. Xu, Y.F. Wang, H.Y. Jing, L. Zhao, Y.D. Han, J. Mater. Eng. Perform. 25 (2016) 3960–3971.CrossRefGoogle Scholar
  6. [6]
    L. Zhao, H.Y. Jing, L.Y. Xu, J.C. An, G.C. Xiao, D.L. Xu, Y.C. Chen, Y. Han, J. Mater. Res. 26 (2011) 934–943.CrossRefGoogle Scholar
  7. [7]
    K. Laha, K.S. Chandravathi, P. Parameswaran, S. Goyal, M.D. Mathew, Metall. Mater. Trans. A 43 (2012) 1174–1186.CrossRefGoogle Scholar
  8. [8]
    T. Watanabe, M. Tabuchi, M. Yamazaki, H. Hongo, T. Tanabe, Int. J. Pres. Ves. Pip. 83 (2006) 63–71.CrossRefGoogle Scholar
  9. [9]
    S.K. Albert, T.P.S. Gill, A.K. Tyagi, S.L. Mannan, S.D. Kulkarni, P. Rodriguez, Weld. J. 76 (1997) 135–142.Google Scholar
  10. [10]
    J.M. Gong, Y. Jiang, S.T. Tu, Acta Metall. Sin. (Engl. Lett.) 17 (2004) 560–568.Google Scholar
  11. [11]
    C. Sudha, A.L.E. Terrance, S.K. Albert, M. Vijayalakshmi, J. Nucl. Mater. 302 (2002) 193–205.CrossRefGoogle Scholar
  12. [12]
    Q. Zhao, X.K. Peng, X.Z. Cong, W. An, Iron and Steel 45 (2010) No. 9, 82–86.Google Scholar
  13. [13]
    J. Cao, Y. Gong, Z.G. Yang, X.M. Luo, F.M. Gu, Z.F. Hu, Int. J. Pres. Ves. Pip. 88 (2011) 94–98.CrossRefGoogle Scholar
  14. [14]
    J.S. Lee, H.G. Armaki, K. Maruyama, T. Muraki, H. Asahi, Mater. Sci. Eng. A 428 (2006) 270–275.CrossRefGoogle Scholar
  15. [15]
    H.K. Danielsen, J. Hald, Calphad 31 (2007) 505–514.CrossRefGoogle Scholar
  16. [16]
    K. Sawada, H. Kushima, M. Tabuchi, K. Kimura, Mater. Sci. Eng. A 528 (2011) 5511–5518.CrossRefGoogle Scholar
  17. [17]
    K. Sawada, M. Tabuchi, H. Hongo, T. Watanabe, K. Kimura, Mater. Charact. 59 (2008) 1161–1167.CrossRefGoogle Scholar
  18. [18]
    R. Mittal, B.S. Sidhu, J. Mater. Process. Technol. 220 (2015) 76–86.CrossRefGoogle Scholar
  19. [19]
    K. Maruyama, K. Sawada, J.I. Koike, ISIJ Int. 41 (2001) 641–653.CrossRefGoogle Scholar
  20. [20]
    NIMS, Creep data sheet No. 48B (2018). https://smds.nims.go.jp/MSDS/pdf/sheet/C48BJ.pdf.
  21. [21]
    J. Akram, P.R. Kalvala, M. Misra, I. Charit, Mater. Sci. Eng. A 688 (2017) 396–406.CrossRefGoogle Scholar
  22. [22]
    F. Monkman, N. Grant, Proc. ASTM 56 (1956) 593–620.Google Scholar
  23. [23]
    J.C. An, H.Y. Jing, G.H. Xiao, L. Zhao, L.Y. Xu, J. Mater. Eng. Perform. 20 (2011) 1474–1480.CrossRefGoogle Scholar
  24. [24]
    K. Sawada, H. Hongo, T. Watanabe, M. Tabuchi, Mater. Charact. 61 (2010) 1097–1102.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  1. 1.School of Material Science and EngineeringBeihang UniversityBeijingChina
  2. 2.Shenhua Guohua (Beijing) Electric Power Research Institute Co., Ltd.BeijingChina

Personalised recommendations