Effect of SiO2 substitution with Al2O3 during high-Al TRIP steel casting on crystallization and structure of low-basicity CaO–SiO2-based mold flux

  • Ding-li Zheng
  • Cheng-bin ShiEmail author
  • Zhi-jun Li
  • Jing Li
  • Jung-wook Cho
Original Paper


The crystallization and structure of non-conventional lime–silica-based mold fluxes after undergoing slag–steel interaction in casting high-Al transformation induced plasticity (TRIP) steel were studied. The results showed that the crystallization temperatures of the mold fluxes decreased with decreasing the SiO2/Al2O3 ratio, and CaO/MnO2 ratio had an opposite effect on the crystallization temperatures. The crystalline phases precipitated in the mold flux were Ca4Si2O7F2 and NaAlSiO4. Decreasing SiO2/Al2O3 ratio and increasing CaO/MnO2 ratio in the mold fluxes have no influence on the types of crystalline phases. The dominant crystalline phase precipitated in each mold flux was Ca4Si2O7F2 with dendritic morphology, except for part of that with globular morphology in the mold flux without MnO2 addition. NaAlSiO4 crystals are distributed in the space among Ca4Si2O7F2 crystals. The size of Ca4Si2O7F2 crystals in the slag with higher SiO2/Al2O3 ratio is smaller, which is attributed to the polymerization degree of the mold flux with increasing SiO2/Al2O3 ratio. [SiO4]-tetrahedral, [AlO4]-tetrahedral and T–O–T bending (T denotes Si or Al) depolymerized gradually with decreasing SiO2/Al2O3 ratio, and an opposite trend was observed for the case with increasing CaO/MnO2 ratio. The polymerization degree of the mold fluxes decreased, which would result in the decrease in the viscosity of the mold fluxes.


Mold flux Crystallization Structure Continuous casting High-Al steel 



The financial support by the National Natural Science Foundation of China (Grant Nos. 51874026 and 51774225) and the Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-18-004A3) is greatly acknowledged. The authors are thankful to the financial support from the State Key Laboratory of Advanced Metallurgy (Grant No. 41618020). This work was also partially financially supported by the National Key Research and Development Program of China (Grant No. 2016YFB0300604).


  1. [1]
    S. Street, K. James, N. Minor, A. Roelant, J. Tremp, Iron Steel Technol. 5 (2008) 38–49.Google Scholar
  2. [2]
    K. Blazek, H.B. Yin, G. Skoczylas, M. McClymonds, M. Frazee, Iron Steel Technol. 8 (2011) 231–240.Google Scholar
  3. [3]
    W.L. Wang, K. Blazek, A. Cramb, Metall. Mater. Trans. B 39 (2008) 66–74.CrossRefGoogle Scholar
  4. [4]
    C.X. Ji, Y. Cui, Z. Zeng, Z.H. Tian, C.L. Zhao, G.S. Zhu, J. Iron Steel Res. Int. 22 (2015) Suppl. 1, 53–56.CrossRefGoogle Scholar
  5. [5]
    M.S. Kim, S.W. Lee, J.W. Cho, M.S. Park, H.G. Lee, Y.B. Kang, Metall. Mater. Trans. B 44 (2013) 299–308.CrossRefGoogle Scholar
  6. [6]
    J.W. Cho, K. Blazek, M. Frazee, H.B. Yin, J.H. Park, S.W. Moon, ISIJ Int. 53 (2013) 62–70.CrossRefGoogle Scholar
  7. [7]
    X.J. Fu, G.H. Wen, P. Tang, Q. Liu, Z.Y. Zhou, Ironmak. Steelmak. 41 (2014) 342–349.CrossRefGoogle Scholar
  8. [8]
    D. Xiao, W. Wang, B. Lu, Metall. Mater. Trans. B 46 (2015) 873–881.CrossRefGoogle Scholar
  9. [9]
    B. Lu, K. Chen, W. Wang, B. Jiang, Metall. Mater. Trans. B 45 (2014) 1496–1509.CrossRefGoogle Scholar
  10. [10]
    C.B. Shi, M.D. Seo, J.W. Cho, S.H. Kim, Metall. Mater. Trans. B 45 (2014) 1081–1097.CrossRefGoogle Scholar
  11. [11]
    L. Zhou, H. Li, W. Wang, Z. Wu, J. Yu, S. Xie, Metall. Mater. Trans. B 48 (2017) 2949–2960.CrossRefGoogle Scholar
  12. [12]
    X. Yu, G.H. Wen, P. Tang, B. Yang, J. Iron Steel Res. Int. 17 (2010) No. 5, 11–16.CrossRefGoogle Scholar
  13. [13]
    C.B. Shi, J. Li, J. W. Cho, F. Jiang, I. H. Jung, Metall. Mater. Trans. B 46 (2015) 2110–2120.CrossRefGoogle Scholar
  14. [14]
    J.L. Li, Q.F. Shu, X.M. Hou, K.C. Chou, ISIJ Int. 55 (2015) 830–836.CrossRefGoogle Scholar
  15. [15]
    H. Nakada, K. Nagata, ISIJ Int. 46 (2006) 441–449.CrossRefGoogle Scholar
  16. [16]
    M.D. Seo, C.B. Shi, J.W. Cho, S.H. Kim, Metall. Mater. Trans. B 45 (2014) 1874–1886.CrossRefGoogle Scholar
  17. [17]
    M.D. Seo, C.B. Shi, H. Wang, J.W. Cho, S.H. Kim, J. Non-Cryst. Solids 412 (2015) 58–65.Google Scholar
  18. [18]
    H. Kim, W.H. Kim, I. Sohn, D.J. Min, Steel Res. Int. 81 (2010) 261–264.CrossRefGoogle Scholar
  19. [19]
    J.H. Park, D.J. Min, H.S. Song, Metall. Mater. Trans. B 35 (2004) 269–275.CrossRefGoogle Scholar
  20. [20]
    J.L. Liao, Y.Y. Zhang, S. Sridhar, X.D. Wang, Z.T. Zhang, ISIJ Int. 52 (2012) 753–758.CrossRefGoogle Scholar
  21. [21]
    G.H. Kim, C.S. Kim, I. Sohn, ISIJ Int. 53 (2013) 170–176.CrossRefGoogle Scholar
  22. [22]
    Z.J. Wang, Q.F. Shu, S. Sridhar, M. Zhang, M. Guo, Z.T. Zhang, Metall. Mater. Trans. B 46 (2015) 758–765.CrossRefGoogle Scholar
  23. [23]
    J.R. Kim, Y.S. Lee, D.J. Min, S.M. Jung, S.H. Yi, ISIJ Int. 44 (2004) 1291–1297.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina
  2. 2.Division of SteelmakingShougang Qian’an Iron and Steel Co., Ltd.Qian’anChina
  3. 3.Graduate Institute of Ferrous TechnologyPohang University of Science and TechnologyPohangRepublic of Korea

Personalised recommendations