Advertisement

Effects of boronizing treatment on microstructural development and mechanical properties of additively manufactured TC4 titanium alloys

  • Jin-zhu SongEmail author
  • Wei Tang
  • Jie-wen Huang
  • Zi-kang Wang
  • Xin-min Fan
  • Ke-hong Wang
Original Paper
  • 11 Downloads

Abstract

Microstructure and mechanical properties of additively manufactured TC4 alloys were investigated, following boronizing treatment. The treatment process was carried out at temperatures ranging from 950 to 1050 °C and held for 8–15 h. The microstructural features of fabricated boride layers were examined by optical microscopy. The phase compositions of the boride layers were analyzed by X-ray diffraction. The hardness profile through the boride layers was also determined. The results showed that the boride layer of additively manufactured TC4 had a thickness of 51 μm and was composed of an outer TiB2 layer on the top of TiB layer; TiB whiskers wedged into the matrix, forming a strong bond between the boride layer and substrate. The diffusion activation energy was determined to be 80.9 kJ/mol. The matrix was found to transfer from needlelike α′ martensite phase to α + β biphasic compounds. The newly formed boride layer can reach 1680 HV in hardness, thus imparting a strong protection to 3D-printed part.

Keywords

Additive manufacturing TC4 titanium alloy Boronizing Microstructure Microhardness 

References

  1. [1]
    T. Pan, X.M. Fan, Y. Zhou, Heat Treat. 29 (2014) No. 2, 27–33.Google Scholar
  2. [2]
    F.P.W. Melchels, M.A.N. Domingos, T.J. Klein, J. Malda, P.J. Bartolo, D.W. Hutmacher, Prog. Poly. Sci. 37 (2012) 1079–1104.CrossRefGoogle Scholar
  3. [3]
    D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, J. Bültmann, Phys. Procedia 12 (2011) 271–278.CrossRefGoogle Scholar
  4. [4]
    B. Baufeld, O. Van der Biest, R. Gault, Mater. Des. 31 (2010) S106–S111.CrossRefGoogle Scholar
  5. [5]
    J. Giannatsis, V. Dedoussis, Int. J. Adv. Manuf. Technol. 40 (2009) 116–127.CrossRefGoogle Scholar
  6. [6]
    J. Chen, H.O. Yang, W.D. Huang, in: Proceedings of the Youth Science and Technology Forum of the China Aeronautical Society, Yinchuan, China, 2004, pp. 623–626.Google Scholar
  7. [7]
    P. Zhang, D.B. Liu, J.Y. Bai, S.B. Liu, N. Liu, Weld. Join. (2015) No. 11, 53–56.Google Scholar
  8. [8]
    E. Brandl, A. Schoberth, C. Leyens, Mater. Sci. Eng. A 532 (2012) 295–307.CrossRefGoogle Scholar
  9. [9]
    A.L. Zhang, D. Liu, H.M. Wang, J. Alloy. Compd. 585 (2014) 220–228.CrossRefGoogle Scholar
  10. [10]
    R. Wauthle, B. Vrancken, B. Beynaerts, K. Jorissen, J. Schrooten, J.P. Kruth, J. Van Humbeeck, Add. Manuf. 5 (2015) 77–84.Google Scholar
  11. [11]
    S.A. Tsipas, M.R. Vázquez-Alcázar, E.M.R. Navas, Surf. Coat. Technol. 205 (2010) 2340–2347.CrossRefGoogle Scholar
  12. [12]
    T.M. Mower, M.J. Long, in: V. Venkatesh, A.L. Pilchak, J.E. Allison, S. Ankem, R. Boyer, J. Christodoulou, H.L. Fraser, M.A. Imam, Y. Kosaka, H.J. Rack, A. Chatterjee, Andy Woodfeld (Eds.), Proceedings of the 13th World Conference on Titanium, The Minerals, Metals & Materials Society, San Diego, California, 2016, pp. 1331–1336.Google Scholar
  13. [13]
    A. Bordin, S. Bruschi, A. Ghiotti, P.F. Bariani, Wear 60 (2015) 89–99.CrossRefGoogle Scholar
  14. [14]
    G. Singh, I. Sen, K. Gopinath, U. Ramamurty, Mater. Sci. Eng. A 540 (2012) 142–151.CrossRefGoogle Scholar
  15. [15]
    Y.S. Tian, Q.Y. Zhang, D.Y. Wang, J. Mater. Process. Technol. 209 (2009) 2887–2891.CrossRefGoogle Scholar
  16. [16]
    M. Keddam, S. Taktak, Appl. Surf. Sci. 399 (2017) 229–236.CrossRefGoogle Scholar
  17. [17]
    D. Rosentual, Trans. ASME 11 (1946) 849–866.Google Scholar
  18. [18]
    N.M. Tikekar, K.S.R. Chandran, A. Sanders, Scripta Mater. 57 (2007) 273–276.CrossRefGoogle Scholar
  19. [19]
    B. Sarma, N.M. Tikekar, K.S.R. Chandran, Ceram. Int. 38 (2012) 6795–6805.CrossRefGoogle Scholar
  20. [20]
    F.H. Li, M.G. Dong, L.N. Wang, Z.G. Fan, J. Northeast. Univ. (Nat. Sci.) 35 (2014) 1284–1287.Google Scholar
  21. [21]
    Y. Liu, Journal of Neijiang Normal College 12 (1997) No. 4, 14–21.Google Scholar
  22. [22]
    A.R. Chen, New Technol. New Process (2009) No. 6, 95–97.Google Scholar
  23. [23]
    J.L. Zhang, Solid boronizing of titanium surface and the study properties of boronizing layers, Shenyang, 2010.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Jin-zhu Song
    • 1
    • 2
  • Wei Tang
    • 1
  • Jie-wen Huang
    • 1
  • Zi-kang Wang
    • 1
  • Xin-min Fan
    • 1
  • Ke-hong Wang
    • 1
  1. 1.College of Materials Science and EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.Jiangsu Product Quality Testing & Inspection InstituteNanjingChina

Personalised recommendations