Effects of boronizing treatment on microstructural development and mechanical properties of additively manufactured TC4 titanium alloys

  • Jin-zhu SongEmail author
  • Wei Tang
  • Jie-wen Huang
  • Zi-kang Wang
  • Xin-min Fan
  • Ke-hong Wang
Original Paper


Microstructure and mechanical properties of additively manufactured TC4 alloys were investigated, following boronizing treatment. The treatment process was carried out at temperatures ranging from 950 to 1050 °C and held for 8–15 h. The microstructural features of fabricated boride layers were examined by optical microscopy. The phase compositions of the boride layers were analyzed by X-ray diffraction. The hardness profile through the boride layers was also determined. The results showed that the boride layer of additively manufactured TC4 had a thickness of 51 μm and was composed of an outer TiB2 layer on the top of TiB layer; TiB whiskers wedged into the matrix, forming a strong bond between the boride layer and substrate. The diffusion activation energy was determined to be 80.9 kJ/mol. The matrix was found to transfer from needlelike α′ martensite phase to α + β biphasic compounds. The newly formed boride layer can reach 1680 HV in hardness, thus imparting a strong protection to 3D-printed part.


Additive manufacturing TC4 titanium alloy Boronizing Microstructure Microhardness 


  1. [1]
    T. Pan, X.M. Fan, Y. Zhou, Heat Treat. 29 (2014) No. 2, 27–33.Google Scholar
  2. [2]
    F.P.W. Melchels, M.A.N. Domingos, T.J. Klein, J. Malda, P.J. Bartolo, D.W. Hutmacher, Prog. Poly. Sci. 37 (2012) 1079–1104.CrossRefGoogle Scholar
  3. [3]
    D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, J. Bültmann, Phys. Procedia 12 (2011) 271–278.CrossRefGoogle Scholar
  4. [4]
    B. Baufeld, O. Van der Biest, R. Gault, Mater. Des. 31 (2010) S106–S111.CrossRefGoogle Scholar
  5. [5]
    J. Giannatsis, V. Dedoussis, Int. J. Adv. Manuf. Technol. 40 (2009) 116–127.CrossRefGoogle Scholar
  6. [6]
    J. Chen, H.O. Yang, W.D. Huang, in: Proceedings of the Youth Science and Technology Forum of the China Aeronautical Society, Yinchuan, China, 2004, pp. 623–626.Google Scholar
  7. [7]
    P. Zhang, D.B. Liu, J.Y. Bai, S.B. Liu, N. Liu, Weld. Join. (2015) No. 11, 53–56.Google Scholar
  8. [8]
    E. Brandl, A. Schoberth, C. Leyens, Mater. Sci. Eng. A 532 (2012) 295–307.CrossRefGoogle Scholar
  9. [9]
    A.L. Zhang, D. Liu, H.M. Wang, J. Alloy. Compd. 585 (2014) 220–228.CrossRefGoogle Scholar
  10. [10]
    R. Wauthle, B. Vrancken, B. Beynaerts, K. Jorissen, J. Schrooten, J.P. Kruth, J. Van Humbeeck, Add. Manuf. 5 (2015) 77–84.Google Scholar
  11. [11]
    S.A. Tsipas, M.R. Vázquez-Alcázar, E.M.R. Navas, Surf. Coat. Technol. 205 (2010) 2340–2347.CrossRefGoogle Scholar
  12. [12]
    T.M. Mower, M.J. Long, in: V. Venkatesh, A.L. Pilchak, J.E. Allison, S. Ankem, R. Boyer, J. Christodoulou, H.L. Fraser, M.A. Imam, Y. Kosaka, H.J. Rack, A. Chatterjee, Andy Woodfeld (Eds.), Proceedings of the 13th World Conference on Titanium, The Minerals, Metals & Materials Society, San Diego, California, 2016, pp. 1331–1336.Google Scholar
  13. [13]
    A. Bordin, S. Bruschi, A. Ghiotti, P.F. Bariani, Wear 60 (2015) 89–99.CrossRefGoogle Scholar
  14. [14]
    G. Singh, I. Sen, K. Gopinath, U. Ramamurty, Mater. Sci. Eng. A 540 (2012) 142–151.CrossRefGoogle Scholar
  15. [15]
    Y.S. Tian, Q.Y. Zhang, D.Y. Wang, J. Mater. Process. Technol. 209 (2009) 2887–2891.CrossRefGoogle Scholar
  16. [16]
    M. Keddam, S. Taktak, Appl. Surf. Sci. 399 (2017) 229–236.CrossRefGoogle Scholar
  17. [17]
    D. Rosentual, Trans. ASME 11 (1946) 849–866.Google Scholar
  18. [18]
    N.M. Tikekar, K.S.R. Chandran, A. Sanders, Scripta Mater. 57 (2007) 273–276.CrossRefGoogle Scholar
  19. [19]
    B. Sarma, N.M. Tikekar, K.S.R. Chandran, Ceram. Int. 38 (2012) 6795–6805.CrossRefGoogle Scholar
  20. [20]
    F.H. Li, M.G. Dong, L.N. Wang, Z.G. Fan, J. Northeast. Univ. (Nat. Sci.) 35 (2014) 1284–1287.Google Scholar
  21. [21]
    Y. Liu, Journal of Neijiang Normal College 12 (1997) No. 4, 14–21.Google Scholar
  22. [22]
    A.R. Chen, New Technol. New Process (2009) No. 6, 95–97.Google Scholar
  23. [23]
    J.L. Zhang, Solid boronizing of titanium surface and the study properties of boronizing layers, Shenyang, 2010.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Jin-zhu Song
    • 1
    • 2
    Email author
  • Wei Tang
    • 1
  • Jie-wen Huang
    • 1
  • Zi-kang Wang
    • 1
  • Xin-min Fan
    • 1
  • Ke-hong Wang
    • 1
  1. 1.College of Materials Science and EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.Jiangsu Product Quality Testing & Inspection InstituteNanjingChina

Personalised recommendations