Microstructural features and precipitation behavior of Ti, Nb and V microalloyed steel during isothermal processing

  • Qi ZhouEmail author
  • Zhuang Li
  • Zhan-shan Wei
  • Di Wu
  • Jin-yu Li
  • Zhen-yao Shao
Original Paper


Thermal simulations of Ti, Nb and V microalloyed steel were conducted using a thermomechanical simulator, and the microstructural evolution and the precipitation behavior during isothermal processing were analyzed. The results show that with increasing holding time, the microstructural constituents change from the martensite and bainitic ferrites to granular bainite and polygonal ferrite. The maximum hardness is obtained for the specimen after isothermal holding for 5 s due to the martensite strengthening effect. The hardness of the specimen decreases after isothermal holding for 10 s, because the strengthening contribution of fine dispersed precipitates becomes weaker. The hardness values of the specimens increase and then remain high after isothermal holding for 60 and 600 s. This is attributed to the contribution of the interphase precipitation hardening to the hardness of the studied steel. The precipitates in the specimen are coarsened after isothermal holding for 3600 s, even though the coarsening is not remarkable. These precipitates are fcc (Ti, Nb)(N, C) particles and belong to the MX-type precipitates. The beneficial effects of precipitation strengthening are lost. The hardness decreases to a minimum hardness value due to the presence of large amounts of polygonal ferrite after isothermal holding for 3600 s. Relatively coarse precipitates are the primary origin of the hardness decrease.


Microalloyed steel Isothermal holding time Microstructural constituent Precipitation Hardness 



This work was supported by the National High Technology Research and Development Program (“863” Program) of China (2015AA03A501) and the Liaoning Provincial Science and Technology Plan Project (2015020189).


  1. [1]
    M. Masoumi, C.C. Silva, I.A. Lemos, L.F.G. Herculano, H.F.G. de Abreu, J. Mater. Eng. Perform. 26 (2017) 1531–1539.CrossRefGoogle Scholar
  2. [2]
    H. Guo, P. Zhou, A.M. Zhao, C. Zhi, R. Ding, J.X. Wang, J. Iron Steel Res. Int. 24 (2017) 290–295.CrossRefGoogle Scholar
  3. [3]
    C.C. Wang, C. Zhang, Z.G. Yang, J. Iron Steel Res. Int. 24 (2017) 177–183.CrossRefGoogle Scholar
  4. [4]
    J. Gou, Z.J. Liu, H. Jia, J. Iron Steel Res. Int. 25 (2018) 243–251.CrossRefGoogle Scholar
  5. [5]
    H. Li, F. Chai, C.F. Yang, C. Li, X.B. Luo, J. Iron Steel Res. Int. 25 (2018) 120–130.CrossRefGoogle Scholar
  6. [6]
    P. Gong, E.J. Palmiere, W.M. Rainforth, Mater. Charact. 124 (2017) 83–89.CrossRefGoogle Scholar
  7. [7]
    C. Dong, A.M. Zhao, X.T. Wang, Q.H. Pang, H.B. Wu, J. Iron Steel Res. Int. 25 (2018) 228–234.CrossRefGoogle Scholar
  8. [8]
    A. Karmakar, S. Biswas, S. Mukherjee, Mater. Sci. Eng. A 690 (2017) 158–169.CrossRefGoogle Scholar
  9. [9]
    P. Gong, E.J. Palmiere, W.M. Rainforth, Acta Mater. 119 (2016) 43–54.CrossRefGoogle Scholar
  10. [10]
    H. Zhao, B.P. Wynne, E.J. Palmiere, Mater. Charact. 123 (2017) 339–348.CrossRefGoogle Scholar
  11. [11]
    S. Liu, V.S.A. Challa, V.V. Natarajan, R.D.K. Misra, D.M. Sidorenko, M.D. Mulholland, M. Manohar, J.E. Hartmann, Mater. Sci. Eng. A 683 (2017) 70–82.CrossRefGoogle Scholar
  12. [12]
    L. Sanz, B. Pereda, B. López, Mater. Sci. Eng. A 685 (2017) 377–390.CrossRefGoogle Scholar
  13. [13]
    M.F. Francis, W.A. Curtin, Acta Mater. 106 (2016) 117–128.CrossRefGoogle Scholar
  14. [14]
    S.Q. Bao, Y. Xu, G. Zhao, X.B. Huang, H. Xiao, C.L. Ye, N.N. Song, Q.M. Chang, J. Iron Steel Res. Int. 24 (2017) 91–96.CrossRefGoogle Scholar
  15. [15]
    J.G. Jung, J.S. Park, J. Kim, Y.K. Lee, Mater. Sci. Eng. A 528 (2011) 5529–5535.CrossRefGoogle Scholar
  16. [16]
    H.W. Yen, P.Y. Chen, C.Y. Huang, J.R. Yang, Acta Mater. 59 (2011) 6264–6274.CrossRefGoogle Scholar
  17. [17]
    S. Clark, V. Janik, Y. Lan, S. Sridhar, ISIJ Int. 57 (2017) 524–532.CrossRefGoogle Scholar
  18. [18]
    G. Miyamoto, R. Hori, B. Poorganji, T. Furuhara, ISIJ Int. 51 (2011) 1733–1739.CrossRefGoogle Scholar
  19. [19]
    S.F. Medina, L. Rancel, M. Gómez, R. Ishak, M. De Sanctis, ISIJ Int. 48 (2008) 1603–1608.CrossRefGoogle Scholar
  20. [20]
    E. Girault, P. Jacques, P. Harlet, K. Mols, J. Van Humbeeck, E. Aernoudt, F. Delannay, Mater. Charact. 40 (1998) 111–118.CrossRefGoogle Scholar
  21. [21]
    A. Lambert-Perlade, A.F. Gourgues, A. Pineau, Acta Mater. 52 (2004) 2337–2348.CrossRefGoogle Scholar
  22. [22]
    K. Zhu, D. Barbier, T. Lung, J. Mater. Sci. 48 (2013) 413–423.CrossRefGoogle Scholar
  23. [23]
    J.T. Zhang, Y.G. Zhao, J. Tan, X.X. Feng, J. Iron Steel Res. Int. 22 (2015) 157–162.CrossRefGoogle Scholar
  24. [24]
    S. Nafisi, B.S. Amirkhiz, F. Fazeli, M. Arafin, R. Glodowski, L. Collins, ISIJ Int. 56 (2016) 154–160.CrossRefGoogle Scholar
  25. [25]
    D.P. Dunne, Mater. Sci. Technol. 26 (2010) 410–420.CrossRefGoogle Scholar
  26. [26]
    I. Timokhina, M.K. Miller, J.T. Wang, H. Beladi, P. Cizek, P.D. Hodgson, Mater. Des. 111 (2016) 222–229.CrossRefGoogle Scholar
  27. [27]
    J.H. Jang, Y.U. Heo, C.H. Lee, H.K.D.H. Bhadeshia, W.S. Dong, Mater. Sci. Technol. 29 (2013) 309–313.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Qi Zhou
    • 1
    Email author
  • Zhuang Li
    • 2
  • Zhan-shan Wei
    • 2
  • Di Wu
    • 3
  • Jin-yu Li
    • 2
  • Zhen-yao Shao
    • 2
  1. 1.School of Environment and Chemical EngineeringShenyang Ligong UniversityShenyangChina
  2. 2.College of Materials Science and EngineeringShenyang Aerospace UniversityShenyangChina
  3. 3.State Key Laboratory of Rolling and AutomationNortheastern UniversityShenyangChina

Personalised recommendations