Deformation behavior and microstructural evolution in ultra-high-strength dual-phase (UHS-DP1000) steel with different strain rates

  • Mei Xu
  • Hui Li
  • Rui-ting Jiang
  • Di Tang
  • Hai-tao Jiang
  • Zhen-li MiEmail author
Original Paper


The dynamic tensile behavior and deformation mechanism of ultra-high-strength dual-phase (UHS-DP1000) steel were investigated over a wide range of strain rates from 10−4 to 103 s−1. As the strain rate increases, the transition strain decreases from 2.73 to 1.92, and the martensite plastic deformation starts earlier. At strain rate of 10−4–0.5 s−1, the inhomogeneous plastic deformation ability increases because the dislocation density in the ferrite matrix increases. This leads to a decrease in uniform elongation and an increase in fracture elongation. When the strain rate increases from 0.5 to 500 s−1, the amount of mobile dislocation increases, which is the main reason for the enhancing uniform elongation and fracture elongation. Meanwhile, because the dislocation motion resistance rapidly increases, the yield strength and ultimate tensile strength also increase. When the strain rate is higher than 500 s−1, the hardening behavior caused by the dislocation motion resistance has not been offset by softening due to the mobile dislocation and adiabatic heating. The voids at the early stage of deformation could not uniformly form and grow, and thus the homogeneous plastic deformation ability decreases.


Ultra-high-strength dual-phase steel Strain rate Microstructural evolution Void Adiabatic heating 



The authors would like to acknowledge the financial support of the National Key R&D Program of China (Grant No. 2017YFB0304404) and Shandong Provincial Natural Science Foundation of China (Grant No. ZR2018MEM007).


  1. [1]
    S. Huang, Y.X. Zhao, C.F. He, J. Iron Steel Res. Int. 21 (2014) 938–944.CrossRefGoogle Scholar
  2. [2]
    T.T. Huang, R.B. Gou, W.J. Dan, W.G. Zhang, Mater. Sci. Eng. A 672 (2016) 88–97.CrossRefGoogle Scholar
  3. [3]
    X.L. Ji, J.Y. Wang, C.C. Ji, J.H. Zhao, J. Iron Steel Res. Int. 22 (2015) 317–323.CrossRefGoogle Scholar
  4. [4]
    H. Ghassemi-Armaki, R. Maaß, S.P. Bhat, S. Sriram, J.R. Greer, K.S. Kumar, Acta Mater. 62 (2014) 197–211.CrossRefGoogle Scholar
  5. [5]
    G. Toktas, A. Toktas, A.D. Karaoglan, J. Iron Steel Res. Int. 21 (2014) 715–722.CrossRefGoogle Scholar
  6. [6]
    Z.Z. Zhao, T.T. Tong, J.H. Liang, H.X. Yin, A.M. Zhao, D. Tang, Mater. Sci. Eng. A 618 (2014) 182–188.CrossRefGoogle Scholar
  7. [7]
    Y. Mazaheri, A. Kermanpur, A. Najafizadeh, Mater. Sci. Eng. A 619 (2014) 1–11.CrossRefGoogle Scholar
  8. [8]
    M.P. Rao, V.S. Sarma, S. Sankaran, Metall. Mater. Trans. A 48 (2017) 1176–1188.CrossRefGoogle Scholar
  9. [9]
    Y. Tomita, K. Okabayashi, Metall. Trans. A 16 (1985) 865–872.CrossRefGoogle Scholar
  10. [10]
    N.D. Beynon, T.B. Jones, G. Fourlaris, Mater. Sci. Technol. 21 (2005) 103–112.CrossRefGoogle Scholar
  11. [11]
    S. Curtze, V.T. Kuokkala, M. Hokka, P. Peura, Mater. Sci. Eng. A 507 (2009) 124–131.CrossRefGoogle Scholar
  12. [12]
    H.J. Cai, H.J. Fan, R.B. Song, Q.F. Dai, Chin. J. Eng. 52 (2016) No. 2, 213–222.Google Scholar
  13. [13]
    H.D. Yu, Y.J. Guo, X.M. Lai, Mater. Des. 30 (2009) 2501–2505.CrossRefGoogle Scholar
  14. [14]
    S. Oliver, T.B. Jones, G. Fourlaris, Mater. Sci. Technol. 23 (2007) 423–431.CrossRefGoogle Scholar
  15. [15]
    Q.F. Dai, R.B. Song, W.Y. Fan, Z.F. Guo, X.X. Guan, Acta Metall. Sin. 48 (2012) 1160–1165.CrossRefGoogle Scholar
  16. [16]
    Y. Gao, X. Chao, Z. He, Y.L. He, L. Li, J. Iron Steel Res. Int. 22 (2015) 48–54.CrossRefGoogle Scholar
  17. [17]
    G.C. Soares, B.M. Gonzalez, L. de Arruda Santos, Mater. Sci. Eng. A 684 (2017) 577–585.Google Scholar
  18. [18]
    B.K. Jha, R. Avtar, V.S. Dwivedi, V. Ramaswany, J. Mater. Sci. Lett. 6 (1987) 891–893.CrossRefGoogle Scholar
  19. [19]
    S.O. Gashti, A. Fattah-Alhosseini, Y. Mazaheri, M.K. Keshavarz, J. Alloy. Compd. 658 (2016) 854–861.CrossRefGoogle Scholar
  20. [20]
    S. Vafaeian, A. Fattah-Alhosseini, Y. Mazaheri, M.K. Keshavarz, Mater. Sci. Eng. A 669 (2016) 480–489.CrossRefGoogle Scholar
  21. [21]
    H. Ashrafi, M. Shamanian, R. Emadi, N. Saeidi, Trans. Indian Inst. Met. 70 (2017) 1575–1584.CrossRefGoogle Scholar
  22. [22]
    L.F. Ramos, D.K. Matlock, G. Krauss, Metall. Trans. A 10 (1979) 259–261.CrossRefGoogle Scholar
  23. [23]
    H.W. Swift, J. Mech. Phys. Solids 1 (1952) 1–18.CrossRefGoogle Scholar
  24. [24]
    D. Das, P.P. Chattopadhyay, J. Mater. Sci. 44 (2009) 2957–2965.CrossRefGoogle Scholar
  25. [25]
    Y.G. Ko, C.W. Lee, S. Namgung, D.H. Shin, J. Alloy. Compd. 504 (2010) S452–S455.CrossRefGoogle Scholar
  26. [26]
    T. Matsuno, C. Teodosiu, D. Maeda, A. Uenishi, Int. J. Plast. 74 (2015) 17–34.CrossRefGoogle Scholar
  27. [27]
    R. Kapoor, S. Nemat-Nasser, Metall. Mater. Trans. A 31 (2000) 815–823.CrossRefGoogle Scholar
  28. [28]
    W.G. Johnston, J.J. Gilman, J. Appl. Phys. 30 (1959) 129–144.CrossRefGoogle Scholar
  29. [29]
    S. Curtze, V.T. Kuokkala, Matéria (Rio de Janeiro) 15 (2010) 157–163.CrossRefGoogle Scholar
  30. [30]
    D.Y. Dong, Y. Liu, Y.L. Yang, M. Ma, T. Jiang, Mater. Sci. Eng. A 594 (2014) 17–25.CrossRefGoogle Scholar
  31. [31]
    G.P. Potirniche, M.F. Horstemeyer, G.J. Wagner, P.M. Gullett, Int. J. Plast. 22 (2006) 257–278.CrossRefGoogle Scholar
  32. [32]
    G. Avramovic-Cingara, C.A.R. Saleh, M.K. Jain, D.S. Wilkinson, Metall. Mater. Trans. A 40 (2009) 3117–3127.CrossRefGoogle Scholar
  33. [33]
    M. Azuma, Structural control of void formation in dual phase steels, Technical University of Denmark, Lyngby, 2013.Google Scholar
  34. [34]
    M. Azuma, S. Goutianos, N. Hansen, G. Winther, X. Huang, Mater. Sci. Technol. 28 (2012) 1092–1100.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Mei Xu
    • 1
  • Hui Li
    • 2
  • Rui-ting Jiang
    • 1
  • Di Tang
    • 3
  • Hai-tao Jiang
    • 1
  • Zhen-li Mi
    • 1
    Email author
  1. 1.Institute of Engineering Technology, University of Science and Technology BeijingBeijingChina
  2. 2.College of EngineeringYantai Nanshan UniversityYantaiChina
  3. 3.Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations