Advertisement

Numerical model of inclusion separation from liquid metal with consideration of dissolution in slag

  • Wei Liu
  • Shu-feng Yang
  • Jing-she Li
  • Feng Wang
  • Hong-bo Yang
Original Paper
  • 13 Downloads

Abstract

The transport of inclusion particles through the liquid metal/molten slag interface and their dissolution in the slag are two key processes of inclusion removal. Based on the latest version of inclusion transport model that takes into account full Reynolds number range and a dissolution kinetics model, a coupled model was developed to simulate the whole process of inclusion removal, from floating in the liquid steel to crossing the interface and further to entering and dissolving in the molten slag. The interaction between the inclusion motion and dissolution was discussed. Even though the inclusion velocity is a key parameter for dissolution, the simulation results show no obvious dissolution during moving state because the process is too short and most of the inclusions dissolve during its static stay in the slag side above the interface. The rate-controlling step of inclusion removal is the transport through the steel–slag interface for the small-size inclusion and static dissolution above the interface for the large-size inclusion, respectively.

Keywords

Inclusion removal Slag dissolution Inclusion separation Clean steel Secondary refining 

Notes

Acknowledgments

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (Nos. 51574020 and 51674023).

Author contributions

Wei Liu and Shu-feng Yang wrote the main manuscript text, and Hong-bo Yang built part of the model.

References

  1. [1]
    H.V. Atkinson, G. Shi, Prog. Mater. Sci. 48 (2003) 457–520.CrossRefGoogle Scholar
  2. [2]
    Y. He, Q. Li, W. Liu, Metall. Mater. Trans. B 43 (2012) 1149–1155.CrossRefGoogle Scholar
  3. [3]
    Z.C. Zhao, R.S. Qin, Metal. Mater. Trans. B 48 (2017) 2781–2787.CrossRefGoogle Scholar
  4. [4]
    K. Takahashi, S. Taniguchi, ISIJ Int. 43 (2003) 820–827.CrossRefGoogle Scholar
  5. [5]
    C. Li, J. Gao, Z. Wang, Z. Guo, Metall. Mater. Trans. B 48 (2017) 900–907.CrossRefGoogle Scholar
  6. [6]
    W. Lou, M. Zhu, Metall. Mater. Trans. B 44 (2013) 762–782.CrossRefGoogle Scholar
  7. [7]
    D.Y. Sheng, M. Söder, P. Jönsson, L. Jonsson, Scand. J. Metall. 31 (2002) 134–147.CrossRefGoogle Scholar
  8. [8]
    L.F. Guo, Y. Wang, H. Li, H.T. Ling, J. Iron Steel Res. Int. 20 (2013) No. 7, 35–39.CrossRefGoogle Scholar
  9. [9]
    Y. Miki, B.G. Thomas, Metall. Mater. Trans. B 30 (1999) 639–654.CrossRefGoogle Scholar
  10. [10]
    L. Zhang, S. Taniguchi, K. Cai, Metall. Mater. Trans. B 31 (2000) 253–266.CrossRefGoogle Scholar
  11. [11]
    S. Yang, W. Liu, J. Li, JOM 67 (2015) 2993–3001.CrossRefGoogle Scholar
  12. [12]
    S. Kimura, Y. Nabeshima, K. Nakajima, S. Mizoguchi, Metall. Mater. Trans. B 31 (2000) 1013–1021.CrossRefGoogle Scholar
  13. [13]
    J. Liu, M. Guo, P.T. Jones, F. Verhaeghe, B. Blanpain, P. Wollants, J. Eur. Ceram. Soc. 27 (2007) 1961–1972.CrossRefGoogle Scholar
  14. [14]
    J.P. Bellot, V. Descotes, A. Jardy, JOM 65 (2013) 1164–1172.CrossRefGoogle Scholar
  15. [15]
    L. Zhang, JOM 65 (2013) 1138–1144.CrossRefGoogle Scholar
  16. [16]
    P. Yan, B.A. Webler, P.C. Pistorius, R.J. Fruehan, Metall. Mater. Trans. B 46 (2015) 2414–2418.CrossRefGoogle Scholar
  17. [17]
    J.H. Park, J.G. Park, D.J. Min, Y.E. Lee, Y.B. Kang, J. Eur. Ceram. Soc. 30 (2010) 3181–3186.CrossRefGoogle Scholar
  18. [18]
    J.H. Park, I.H. Jung, H.G. Lee, ISIJ Int. 46 (2006) 1626–1634.CrossRefGoogle Scholar
  19. [19]
    B.J. Monaghan, L. Chen, J. Non-Cryst. Solids 347 (2004) 254–261.Google Scholar
  20. [20]
    S.H. Lee, C. Tse, K.W. Yi, P. Misra, V. Chevrier, C. Orrling, S. Sridhar, A.W. Cramb, J. Non-Cryst. Solids 282 (2001) 41–48.Google Scholar
  21. [21]
    K. Nakajima, K. Okamura, in: Proc. 4th Int. Conf. on Molten Slags and Fluxes, ISIJ, Sendai, 1992, pp. 505–510.Google Scholar
  22. [22]
    J. Strandh, K. Nakajima, R. Eriksson, P. Jönsson, ISIJ Int. 45 (2005) 1597–1606.CrossRefGoogle Scholar
  23. [23]
    J. Strandh, K. Nakajima, R. Eriksson, P. Jönsson, ISIJ Int. 45 (2005) 1838–1847.CrossRefGoogle Scholar
  24. [24]
    C. Liu, S. Yang, J. Li, L. Zhu, X. Li, Metall. Mater. Trans. B 47 (2016) 1882–1892.CrossRefGoogle Scholar
  25. [25]
    S. Yang, J. Li, C. Liu, L. Sun, H. Yang, Metall. Mater. Trans. B 45 (2014) 2453–2463.CrossRefGoogle Scholar
  26. [26]
    G.N. Shannon, S. Sridhar, High Temp. Mat. Pr.-Isr. 24 (2005) 111–124.Google Scholar
  27. [27]
    L.A. Girifalco, R.J. Good, J. Phys. Chem. 61 (1957) 904–909.CrossRefGoogle Scholar
  28. [28]
    C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melançon, A.D. Pelton, S. Petersen, Calphad 26 (2002) 189–228.CrossRefGoogle Scholar
  29. [29]
    S. Vantilt, B. Coletti, B. Blanpain, J. Fransaer, P. Wollants, S. Sridhar, ISIJ Int. 44 (2004) 1–10.CrossRefGoogle Scholar
  30. [30]
    B. Coletti, B. Blanpain, S. Vantilt, S. Sridhar, Metall. Mater. Trans. B 34 (2003) 533–538.CrossRefGoogle Scholar
  31. [31]
    P. Misra, S. Sridhar, A.W. Cramb, Metall. Mater. Trans. B 32 (2001) 963–967.CrossRefGoogle Scholar
  32. [32]
    P. Misra, V. Chevrier, S. Sridhar, A.W. Cramb, Metall. Mater. Trans. B 31 (2000) 1135–1139.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Wei Liu
    • 1
  • Shu-feng Yang
    • 1
  • Jing-she Li
    • 1
  • Feng Wang
    • 1
  • Hong-bo Yang
    • 2
  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.National Engineering Research Center for Rare Earth MaterialsGeneral Research Institute for Nonferrous MetalsBeijingChina

Personalised recommendations