Effect of simulated thermomechanical processing on transformation behavior and microstructure of 82B steel

  • He Wei
  • Yin-li ChenEmail author
  • Lan Su
  • Di Tang
Original Paper


The effects of loop-laying temperature and austenite deformation on the phase transformation behavior during continuous cooling, microstructure, and pearlite interlaminar spacing in 82B steels were investigated. Static and dynamic continuous cooling transformation (CCT) diagrams were measured with a Gleeble-3500 thermal simulator, and the mechanisms governing changes in the initial temperature, initial time, and duration of the phase transformation zone were also analyzed and discussed. The results show that CCT diagram shifted to the bottom right, the initial temperature of the phase transition decreased, the initial time of the phase transition increased, the duration of the phase transition increased, and the lamellar spacing of pearlite was finer as the loop-laying temperature increased. The initial phase transition time decreased, and the phase transition duration first reduced, then increased, and finally decreased in the static condition and in the dynamic condition at 850 °C as the cooling rate increased. Meanwhile, the phase transition duration continuously decreased in the dynamic condition at 900 °C. At a given loop-laying temperature, the lamellar spacing in pearlite was finer due to austenite deformation compared with the undeformed case. Compared with the results shown in the dynamic CCT diagram, the corresponding phase diagrams of the static CCT diagram slightly shifted to the bottom right. Moreover, there was a clear linear relationship between the reciprocal of the lamellar spacing in pearlite and the average undercooling degree in the phase transformation zone.


82B steel Phase transformation Loop-laying temperature Austenite deformation Microstructure 



This work was financially supported by the National Key R&D Program of China (2016YFB0301302).


  1. [1]
    J.Q. Xu, Y.Z. Liu, S.M. Zhou, J. Iron Steel Res. Int. 15 (2008) No. 2, 56-59, 64.Google Scholar
  2. [2]
    G. Miyamoto, Y. Karubeb, T. Furuharaa, Acta Mater. 103 (2016) 370–381.CrossRefGoogle Scholar
  3. [3]
    B.L. DeCost, T. Francis, E.A. Holm, Acta Mater. 133 (2017) 30–40.CrossRefGoogle Scholar
  4. [4]
    L.H. Jiang, A.G. Wang, N.Y. Tian, W.C. Zhang, Q.L. Fan, J. Iron Steel Res. Int. 18 (2011) No. 8, 25–29.CrossRefGoogle Scholar
  5. [5]
    C.L. Zhang, Y.Z. Liu, L.Y. Zhou, C. Jiang, J. Iron Steel Res. Int. 19 (2012) No. 3, 47–51, 61.Google Scholar
  6. [6]
    C.L. Zhang, Y.Z. Liu, C. Jiang, J.F. Xiao, J. Iron Steel Res. Int. 18 (2011) No. 6, 49–53.CrossRefGoogle Scholar
  7. [7]
    M.L. Aggarwal, V.P. Agrawal, R.A. Khanc, Int. J. Fatigue 28 (2006) 1845–1853.CrossRefGoogle Scholar
  8. [8]
    B. Podgornik, M. Torkar, J. Burja, M. Godec, B. Senčič, Mater. Sci. Eng. A 638 (2015) 183–189.CrossRefGoogle Scholar
  9. [9]
    J.M. Zhang, L.K. Ji, D.J. Bao, Y.R. Feng, S.X. Li, Y.Q. Weng, J. Iron Steel Res. Int. 21 (2014) 614–618.CrossRefGoogle Scholar
  10. [10]
    A. Bytyqi, M. Jenko, M. Godec, Vacuum 86 (2012) 648–651.CrossRefGoogle Scholar
  11. [11]
    R. Schuller, U. Karr, D. Irrasch, M. Fitzka, M. Hahn, M. Bacher-Höchst, H. Mayer, J. Mater. Sci. 50 (2015) 5514–5523.CrossRefGoogle Scholar
  12. [12]
    Y. Harada, H. Kosaka, M. Ishihara, Steel Res. Int. 84 (2013) 1333–1339.CrossRefGoogle Scholar
  13. [13]
    F. Hao, F.M. Wang, G.X. Jin, C.R. Li, Heat Treat. Met. 36 (2011) No. 12, 4–8.Google Scholar
  14. [14]
    J.H. Ai, T.C. Zhao, H.J. Gao, Y.H. Hu, X.S. Xie, J. Mater. Process. Technol. 160 (2005) 390–395.CrossRefGoogle Scholar
  15. [15]
    A.S. Hamada, L.P. Karjalainen, M.C. Somani, Mater. Sci. Eng. A 467 (2007) 114–124.CrossRefGoogle Scholar
  16. [16]
    E. Erisir, U. Prahl, W. Bleck, Metall. Mater. Trans. A 44 (2013) 5549–5555.CrossRefGoogle Scholar
  17. [17]
    J.Q. Xu, Y.Z. Liu, S.M. Zhou, J. Iron Steel Res. Int. 15 (2008) No. 4, 57–60.CrossRefGoogle Scholar
  18. [18]
    X.Y. Shuai, Y. Zhou, D.H. Wu, Iron and Steel 41 (2006) No. 8, 68–72.Google Scholar
  19. [19]
    N. Li, T. Center, Physics Examination and Testing 35 (2017) No. 4, 6–10.Google Scholar
  20. [20]
    I. Tamura, H. Sekine, T. Tanaka, C. Ouchi, Thermomechanical processing of high-strength low-alloy steels, Butterworth, London, 1988.Google Scholar
  21. [21]
    A. Grajcar, R. Kuziak, W. Zalecki, Arch. Civ. Mech. Eng. 12 (2012) 334–341.CrossRefGoogle Scholar
  22. [22]
    A. Lambert-Perlade, A.F. Gourgues, A. Pineau, Acta Mater. 52 (2004) 2337–2348.CrossRefGoogle Scholar
  23. [23]
    R.K. Dutta, M. Amirthalingam, M.J.M. Hermans, I.M. Richardson, Mater. Sci. Eng. A 559 (2013) 86–95.CrossRefGoogle Scholar
  24. [24]
    A. Kawalek, J. Rapalska-Nowakowska, H. Dyja, B. Koczurkiewicz, Metalurgija 52 (2013) 23–26.Google Scholar
  25. [25]
    T.M. Maccagno, J.J. Jonas, P.D. Hodgson, ISIJ Int. 36 (1996) 720–728.CrossRefGoogle Scholar
  26. [26]
    H.J. Jun, J.S. Kang, D.H. Seo, K.B. Kang, C.G. Park, Mater. Sci. Eng. A 422 (2006) 157–162.CrossRefGoogle Scholar
  27. [27]
    D.J. Mun, E.J. Shin, Y.W. Choi, J.S. Lee, Y.M. Koo, Mater. Sci. Eng. A 545 (2012) 214–224.CrossRefGoogle Scholar
  28. [28]
    C. Zener, Trans. AIME 167 (1946) 550–595.Google Scholar
  29. [29]
    M. Hillert, L. Höglund, Scripta Mater. 51 (2004) 77–78.CrossRefGoogle Scholar
  30. [30]
    M.P. Puls, J.S. Kirkaldy, Metall. Mater. Trans. B 3 (1972) 2777–2796.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  1. 1.Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology BeijingBeijingChina
  2. 2.Beijing Laboratory of Metallic Materials and Processing for Modern TransportationBeijingChina

Personalised recommendations