Advertisement

Effect of shot peening on microstructure, nanocrystallization and microhardness of Ti–10V–2Fe–3Al alloy surface

  • Hai-zhong ZhengEmail author
  • Sheng-hua Guo
  • Qin-hao Luo
  • Xiao-yong Shu
  • Gui-fa Li
Original Paper
  • 12 Downloads

Abstract

Severe plastic deformation of Ti–10V–2Fe–3Al alloy in the surface region was caused by shot peening at air pressure of 0.6 MPa with processing time ranging from 1 to 45 min. The results showed that the thickness of surface deformation layer was proportional to the processing time, the microhardness of the shot-peened surface increased from 280 to 385 HV, and the depth of highly hardening layers arrived at 200 μm. It was worth noting that a grain size gradient from nanocrystalline on the surface toward coarse grain in the matrix was obtained during the shot peening process and the minimum grain size in the top surface after shot peening was about 100–200 nm.

Keywords

Ti–10V–2Fe–3Al alloy Shot peening treatment Surface nanocrystallization Martensitic transformation Microhardness 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51361026), the Natural Science Foundation of Jiangxi Province (Grant No. 20171BAB206006), the Key Project of Science and Technology Project of Jiangxi Provincial Education Department (Grant No. GJJ160678), and Open Foundation of National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University (GF201501004).

References

  1. [1]
    W. Chen, J.Y. Zhang, S. Cao, Y. Pan, M.D. Huang, Q.M. Hu, Q.Y. Sun, L. Xiao, J. Sun, Acta Mater. 117 (2016) 68–80.CrossRefGoogle Scholar
  2. [2]
    J.Y. Si, F. Gao, J. Zhang, J. Iron Steel Res. Int. 19 (2012) No. 10, 54–58.CrossRefGoogle Scholar
  3. [3]
    R. Banoth, R. Sarkar, A. Bhattacharjee, T.K. Nandy, G.V.S.N. Rao, Mater. Des. 67 (2015) 50–63.CrossRefGoogle Scholar
  4. [4]
    G.T. Terlinde, T.W. Duerig, J.C. Williams, Metall. Mater. Trans. A 14 (1983) 2101–2115.CrossRefGoogle Scholar
  5. [5]
    S.M. Li, W.H. Yao, J.H. Liu, M. Yu, L. Wu, K. Ma, Surf. Coat. Technol. 277 (2015) 234–241.CrossRefGoogle Scholar
  6. [6]
    J.C. Oh, D.K. Choo, S. Lee, Surf. Coat. Technol. 127 (2000) 76–85.CrossRefGoogle Scholar
  7. [7]
    F.A. Guo, N. Trannoy, J. Lu, Superlattice Microst. 35 (2004) 445–453.CrossRefGoogle Scholar
  8. [8]
    X.C. Liu, H.W. Zhang, K. Lu, Science 342 (2013) 337–340.CrossRefGoogle Scholar
  9. [9]
    Y.C. Zhang, C. Chen, C.J. Shang, D.Y. Li, J. Iron Steel Res. Int. 21 (2014) 891–896.CrossRefGoogle Scholar
  10. [10]
    J.Z. Lu, K.Y. Luo, Y.K. Zhang, C.Y. Cui, G.F. Sun, J.Z. Zhou, L. Zhang, J. You, K.M. Chen, J.W. Zhong, Acta Mater. 58 (2010) 3984–3994.CrossRefGoogle Scholar
  11. [11]
    Z.B. Wang, N.R. Tao, W.P. Tong, J. Lu, K. Lu, Acta Mater. 51 (2003) 4319–4329.CrossRefGoogle Scholar
  12. [12]
    J.L. Liu, M. Umemoto, Y. Todaka, K. Tsuchiya, J. Mater. Sci. 42 (2007) 7716–7720.CrossRefGoogle Scholar
  13. [13]
    J.J. Liu, Q. Wang, K. Sun, S. Gravier, J.J. Blandin, B.A. Sun, J. Lu, J. Iron Steel Res. Int. 24 (2017) 475–482.CrossRefGoogle Scholar
  14. [14]
    J.Z. Lu, L.J. Wu, G.F. Sun, K.Y. Luo, Y.K. Zhang, J. Cai, C.Y. Cui, X.M. Luo, Acta Mater. 127 (2017) 252–266.CrossRefGoogle Scholar
  15. [15]
    L. Jin, W.F. Cui, X. Song, L. Zhou, Appl. Surf. Sci. 347 (2015) 553–560.CrossRefGoogle Scholar
  16. [16]
    Y.Q. Hua, Y.C. Bai, Y.X. Ye, Q. Xue, H.X. Liu, R.F. Chen, K.M. Chen, Appl. Surf. Sci. 283 (2013) 775–780.CrossRefGoogle Scholar
  17. [17]
    B.N. Mordyuk, G.I. Prokopenko, Mater. Sci. Eng. A 437 (2006) 396–405.CrossRefGoogle Scholar
  18. [18]
    Y.K. Gao, Surf. Eng. 23 (2007) 431–433.CrossRefGoogle Scholar
  19. [19]
    S.J. Dai, Y.T. Zhu, Z.W. Huang, Vacuum 125 (2016) 215–221.CrossRefGoogle Scholar
  20. [20]
    Y.G. Liu, M.Q. Li, H.J. Liu, J. Alloy. Compd. 685 (2016) 186–193.CrossRefGoogle Scholar
  21. [21]
    K.A. Darling, M.A. Tschopp, A.J. Roberts, J.P. Ligda, L.J. Kecskes, Scripta Mater. 69 (2013) 461–464.CrossRefGoogle Scholar
  22. [22]
    Y.G. Liu, H.M. Li, M.Q. Li, Mater. Des. 65 (2015) 120–126.CrossRefGoogle Scholar
  23. [23]
    B. Arifvianto, M. Mahardika, P. Dewo, P.T. Iswanto, U.A. Salim, Mater. Chem. Phys. 125 (2011) 418–426.CrossRefGoogle Scholar
  24. [24]
    M. Marteleur, F. Sun, T. Gloriant, P. Vermaut, P.J. Jacques, F. Prima, Scripta Mater. 66 (2012) 749–752.CrossRefGoogle Scholar
  25. [25]
    S. Nemat-Nasser, W.G. Guo, J.Y. Cheng, Acta Mater. 47 (1999) 3705–3720.CrossRefGoogle Scholar
  26. [26]
    V.S. Ananthan, T. Leffers, N. Hansen, Scripta Metall. et Mater. 25 (1991) 137–142.CrossRefGoogle Scholar
  27. [27]
    D.A. Hoke, G.T. Gray, Scripta Metall. et Mater. 33 (1995) 171–177.CrossRefGoogle Scholar
  28. [28]
    J.R. Luo, X. Song, L.Z. Zhuang, J.S. Zhang, J. Iron Steel Res. Int. 23 (2016) 74–77.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Hai-zhong Zheng
    • 1
  • Sheng-hua Guo
    • 1
  • Qin-hao Luo
    • 1
  • Xiao-yong Shu
    • 1
  • Gui-fa Li
    • 1
  1. 1.National Defense Key Disciplines Laboratory of Light Alloy Processing Science and TechnologyNanchang Hangkong UniversityNanchangChina

Personalised recommendations