Journal of Iron and Steel Research International

, Volume 26, Issue 9, pp 941–952 | Cite as

High-temperature fracture behavior of MnS inclusions based on GTN model

  • Xin-gang Liu
  • Can WangEmail author
  • Qing-feng Deng
  • Bao-feng Guo
Original Paper


The influence of the MnS plastic inclusion on the accumulation of internal damage was considered, and the Gurson–Tvergaard–Needleman (GTN) model was calibrated based on the finite element inverse method and image analysis method using ABAQUS and GTN models. The modified GTN damage model was used to simulate the initiation and propagation of cracks in an as-cast 304 stainless steel with MnS inclusions at 900 °C. The simulation results agreed well with the experimental results, indicating that the model can be effectively applied to examine the high-temperature fracture behavior of MnS inclusions. The simulation and high-temperature tensile test results revealed that MnS inclusions increased the number of holes initiation and the probability of hole polymerization, reduced the crack propagation resistance, accelerated the occurrence of material fracture behavior, and were closely related to the stress state at high temperatures. When the stress triaxiality was low, the plastic strain in the metal matrix was high, and the MnS plastic inclusions accelerated the polymerization of the pores, making metal fracture failure more likely. On the other hand, when the stress triaxiality was high, the stress state in the metal matrix was biased to the tensile state, the plastic strain in the metal matrix was low, and the influence of MnS plastic inclusions on the fracture behavior was not evident.


MnS inclusion GTN model Tension High-temperature fracture behavior Crack initiation Crack propagation Stress 



This research was supported by the National Natural Science Foundation of China (Grant Nos. 51575475 and 51675465).


  1. [1]
    M. Daly, T.L. Burnett, E.J. Pickering, O.C.G. Tuck, F. Léonard, R. Kelley, P.J. Withers, A.H. Sherry, Acta Mater. 130 (2017) 56–68.CrossRefGoogle Scholar
  2. [2]
    Y. Neishi, T. Makino, N. Matsui, H. Matsumoto, M. Higashida, H. Ambai, Metall. Mater. Trans. A 44 (2013) 2131–2140.CrossRefGoogle Scholar
  3. [3]
    S.K. Paul, A. Ray, J. Mater. Eng. Perform. 6 (1997) 27–34.CrossRefGoogle Scholar
  4. [4]
    R.S. Qi, M. Jin, X.G. Liu, B.F. Guo, J. Iron Steel Res. Int. 23 (2016) 531–538.CrossRefGoogle Scholar
  5. [5]
    L.Y. Wang, L. Li, J. Mater. Eng. Perform. 26 (2017) 3831–3838.CrossRefGoogle Scholar
  6. [6]
    M. Abbasi, M.A. Shafaat, M. Ketabchi, D.F. Haghshenas, M. Abbasi, J. Mech. Sci. Technol. 26 (2012) 345–352.CrossRefGoogle Scholar
  7. [7]
    Y.R. Oh, H.S. Nam, Y.J. Kim, N. Miura, Int. J. Press. Vessels Pip. 159 (2018) 35–44.CrossRefGoogle Scholar
  8. [8]
    S. Gatea, H. Ou, B. Lu, G. McCartney, Eng. Fract. Mech. 186 (2017) 59–79.CrossRefGoogle Scholar
  9. [9]
    L. Malcher, F.M.A. Pires, J.M.A.C. de Sá, Int. J. Plast. 54 (2014) 193–228.CrossRefGoogle Scholar
  10. [10]
    G. Perrin, J.B. Leblond, Int. J. Plast. 16 (2000) 91–120.CrossRefGoogle Scholar
  11. [11]
    V. Tvergaard, J. Mech. Phys. Solids 44 (1996) 1237–1253.CrossRefGoogle Scholar
  12. [12]
    J. Zhang, H.C. Kwon, H.Y. Kim, S.M. Byon, H.D. Park, Y.T. Im, J. Mater. Process. Technol. 162 (2005) 447–453.CrossRefGoogle Scholar
  13. [13]
    R. Kiran, K. Khandelwal, Fatigue Fract. Eng. Mater. Struct. 37 (2014) 171–183.CrossRefGoogle Scholar
  14. [14]
    M.S. Joun, J.G. Eom, M.C. Lee, Mech. Mater. 40 (2008) 586–593.CrossRefGoogle Scholar
  15. [15]
    Y. Zhu, M.D. Engelhardt, R. Kiran, Eng. Fract. Mech. 199 (2018) 410–437.CrossRefGoogle Scholar
  16. [16]
    M. Springmann, M. Kuna, Comput. Mater. Sci. 33 (2005) 501–509.CrossRefGoogle Scholar
  17. [17]
    C.K. Oh, Y.J. Kim, J.H. Baek, Y.P. Kim, W. Kim, Int. J. Mech. Sci. 49 (2007) 1399–1412.CrossRefGoogle Scholar
  18. [18]
    D. Steglich, W. Brocks, Comput. Mater. Sci. 9 (1997) 7–17.CrossRefGoogle Scholar
  19. [19]
    S. Katani, F. Madadi, M. Atapour, S.Z. Rad, Mater. Des. 49 (2013) 1016–1021.CrossRefGoogle Scholar
  20. [20]
    W.B. Lievers, A.K. Pilkey, D.J. Lloyd, Acta Mater. 52 (2004) 3001–3007.CrossRefGoogle Scholar
  21. [21]
    T. Pardoen, J.W. Hutchinson, J. Mech. Phys. Solids 48 (2000) 2467–2512.CrossRefGoogle Scholar
  22. [22]
    M. Khelifa, M. Oudjene, A. Khennane, Comput. Struct. 85 (2007) 205–212.CrossRefGoogle Scholar
  23. [23]
    Y.M. Huang, K.H. Chien, J. Mater. Process. Technol. 117 (2001) 43–51.CrossRefGoogle Scholar
  24. [24]
    P. Teixeira, A.D. Santos, F.M.A. Pires, J. Mater. Process. Technol. 177 (2006) 278–281.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Forging and Stamping Technology and Science (Yanshan University)Ministry of Education of ChinaQinhuangdaoChina

Personalised recommendations