Advertisement

Non-isothermal thermogravimetric investigation on mutual effect between bituminite and anthracite in blends for blast furnace injection

  • Yun-fei Wu
  • Qing-hai PangEmail author
  • Zhi-jun He
  • Teng-fei Song
  • Wen-long Zhan
  • Jun-hong Zhang
Original Paper

Abstract

In order to clarify the mutual effect between bituminite and anthracite in blends during industrial combustion, the influence of particle size and heating rate as well as oxygen concentration in atmosphere was analyzed. The results of non-isothermal thermogravimetric analysis indicated that the combustion behavior of blends was of great difference though blends were prepared with the same volatile content of 20%. The catalysis of bituminite to anthracite changed with the thermal and kinetic condition of combustion reaction, and consequently, blends with different collocations were suitable for various combustion environments. Superior combustion properties of some blends were achieved at high heating rates, while others might react faster under high oxygen-enriched atmosphere. Simultaneously, the volume model and unreacted core model as well as random pore model were introduced to fit the experimental data. The kinetic calculation results showed that the combustion of blends at different heating rates all agreed better with that of random pore model in comparison with the other two models, while the apparent activation energy of samples all decreased with the increase in heating rate. The similarity of functional group structure between bituminite and anthracite is closely related to the accordance in combustion stage of bituminite and anthracite in blends.

Keywords

Pulverized coal injection Coal blend Mutual effect Kinetics Activation energy Bituminite Anthracite 

Notes

Acknowledgements

This work was financially supported by Natural Science and Foundation of Liaoning Province (No. 20170540455) and National Natural Science Foundation of China (51504131, 51474124, 51647639).

References

  1. [1]
    R.S. Xu, J.L. Zhang, G.W. Wang, T.F. Song, H.Y. Wang, S.Y. Liu, J. Chongqing Univ. 38 (2015) No. 2, 1–10.Google Scholar
  2. [2]
    A. Sarwar, M. Nasiruddin Khan, K.F. Azhar, J. Therm. Anal. Calorim. 109 (2012) 97–103.CrossRefGoogle Scholar
  3. [3]
    J.G. Shao, J.L. Zhang, G.W. Wang, Z. Wang, H.W. Guo, J. Iron Steel Res. Int. 21 (2014) 1002–1008.CrossRefGoogle Scholar
  4. [4]
    J.L. Zhang, X.D. Zhang, S.S. Chen, W. Lü, J. Iron Steel Res. 21 (2009) No. 2, 6–8.Google Scholar
  5. [5]
    D.W. Kong, J.L. Zhang, X.H. Lin, Y.N. Bai, X.B. Wu, J. Iron Steel Res. 23 (2011) No. 11, 4–9.Google Scholar
  6. [6]
    S. Ren, F.Q. Guo, J. Yang, L. Yao, Q. Zhao, M. Kong, Chem. Eng. Res. Des. 126 (2017) 278–285.CrossRefGoogle Scholar
  7. [7]
    G.W. Ma, X.M. Zhang, J.H. Liu, J.Y. Ma, Electric Power Science and Engineering 29 (2013) No. 2, 56–62.Google Scholar
  8. [8]
    Y.S. Fan, Z. Zou, J.B. Gao, Z.D. Cao, Proceedings of the SCEE 25 (2005) 118–121.Google Scholar
  9. [9]
    G.W. Wang, J.L. Zhang, W.W. Chang, R.P. Li, Y.J. Li, C. Wang, Energy 147 (2018) 25–35.CrossRefGoogle Scholar
  10. [10]
    X. Xing, H. Rogers, G. Zhang, K. Hockings, P. Zulli, A. Deev, J. Mathieson, O. Ostrovski, Fuel Process. Technol. 157 (2017) 42–51.CrossRefGoogle Scholar
  11. [11]
    G.W. Wang, J.L. Zhang, J.G. Shao, Y.K. Jiang, B. Gao, D. Zhao, D.H. Liu, H.Y. Wang, Z.J. Liu, K.X. Jiao, BioResources 11 (2016) 4821–4838.Google Scholar
  12. [12]
    J. Fermoso, M.V. Gil, C. Pevida, J.J. Pis, F. Rubiera, Chem. Eng. J. 161 (2010) 276–284.CrossRefGoogle Scholar
  13. [13]
    H. Fei, S. Hu, J. Xiang, L. Sun, P. Fu, G. Chen, Fuel 90 (2011) 441–448.CrossRefGoogle Scholar
  14. [14]
    Y. Zhang, S. Hara, S. Kajitani, M. Ashizawa, Fuel 89 (2010) 152–157.CrossRefGoogle Scholar
  15. [15]
    X.D. Xing, J.L. Zhang, S. Ren, M.M. Cao, K.X. Jiao, Coal Conversion 35 (2012) No. 3, 43–47.Google Scholar
  16. [16]
    G.W. Wang, J.L. Zhang, J.G. Shao, H. Sun, H.P. Zuo, J. Iron Steel Res. Int. 21 (2014) 897–904.CrossRefGoogle Scholar
  17. [17]
    J.H. Zhou, C.J. Ping, W.J. Yang, J.Z. Liu, J. Cheng, K.F. Cen, Chin. J. Power Eng. 25 (2005) 207–210.Google Scholar
  18. [18]
    H. Sun, J.L. Zhang, G.W. Wang, J.G. Shao, X.H. Peng, Chin. J. Process Eng. 14 (2014) 114–119.Google Scholar
  19. [19]
    S. Kasaoka, Y. Sakata, C. Tong, Int. Chem. Eng. 25 (1985) 160–175.Google Scholar
  20. [20]
    S.J. Yuh. E.E Wolf, Fuel. 63 (1984) 1604–1609.CrossRefGoogle Scholar
  21. [21]
    C.Y. Chen, Ind. Eng. Chem. 60 (1968) 34–54.Google Scholar
  22. [22]
    J. Ochoa, M.C. Cassanello, P.R. Bonelli, A.L. Cukierman, Fuel Process. Technol. 74 (2001) 161–176.CrossRefGoogle Scholar
  23. [23]
    S.K. Bhatia, D.D. Perlmutter, AICHE J. 26 (1980) 379–386.CrossRefGoogle Scholar
  24. [24]
    S.K. Bhatia, D.D. Perlmutter, AIChE J. 27 (1981) 247–254.CrossRefGoogle Scholar
  25. [25]
    J.G. Shao, J.L. Zhang, G.W. Wang, H.B. Zuo, Chin. J. Process Eng. 14 (2014) 108–113.Google Scholar
  26. [26]
    A. Tahmasebi, M.A. Kassim, J. Yu, S. Bhattacharya, Bioresour. Technol. 150 (2013) 15–27.CrossRefGoogle Scholar
  27. [27]
    Y.F. Wang, Y.M. Song, H.C. Zhou, K.D. Zhi, Y.Y. Teng, R.X. He, R.K. Tian, Q.S. Liu, Environ. Progress Sustain. Energy 36 (2017) 766–774.Google Scholar
  28. [28]
    J.L. Zhang, G.W. Wang, X.D. Xing, Q.H. Pang, J.G. Shao, S. Ren, J. Iron Steel Res. 25 (2013) No. 4, 9–14.Google Scholar
  29. [29]
    S.P. Zou, Y.L. Wu, M.D. Yang, C. Li, J.M. Tong, Bioresour. Technol. 101 (2010) 359–365.CrossRefGoogle Scholar
  30. [30]
    N. Zouaoui, J.F. Brilhac, F. Mechati, M. Jeguirim, B. Djelouli, P. Gilot, J. Therm. Anal. Calorim. 102 (2010) 837–849.CrossRefGoogle Scholar
  31. [31]
    X.G. Li, Y. Lv, B.G. Ma, S.W. Jian, H.B. Tan, Bioresour. Technol. 102 (2011) 9783–9787.CrossRefGoogle Scholar
  32. [32]
    H. Haykiri-Acma, S. Yaman, Waste Manage. 28 (2008) 2077–2084.CrossRefGoogle Scholar
  33. [33]
    J.S. Yu, Coal Chemistry, Metallurgical Industry Press, Beijing, 2006.Google Scholar
  34. [34]
    K.L. Pang, W.G. Xiang, C.S. Zhao, J. Anal. Appl. Pyrol. 80 (2007) 77–84.CrossRefGoogle Scholar
  35. [35]
    G.W. Wang, J.L. Zhang, G.H. Zhang, X.J. Ning, X.Y. Li, Z.J. Liu, J. Guo, Energy 131 (2017) 27–40.CrossRefGoogle Scholar
  36. [36]
    G.W. Wang, J.L. Zhang, X.M. Hou, J.G. Shao, W.W. Geng, Bioresour. Technol. 177 (2015) 66–73.CrossRefGoogle Scholar
  37. [37]
    X. Liu, X.H. Chen, Henan Chemical Industry 28 (2011) No. 6, 36–38.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Yun-fei Wu
    • 1
  • Qing-hai Pang
    • 1
    Email author
  • Zhi-jun He
    • 1
  • Teng-fei Song
    • 2
  • Wen-long Zhan
    • 1
  • Jun-hong Zhang
    • 1
  1. 1.School of Materials and MetallurgyUniversity of Science and Technology LiaoningAnshanChina
  2. 2.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations