Journal of Iron and Steel Research International

, Volume 26, Issue 9, pp 962–972 | Cite as

Distribution of TiN inclusions in Ti-stabilized ultra-pure ferrite stainless steel slab

  • Hao-jian Duan
  • Ying Zhang
  • Ying RenEmail author
  • Li-feng ZhangEmail author
Original Paper


In order to clarify and control the silver defect on surface of cold-rolled sheet of the Ti-stabilized ultra-pure ferrite stainless steel, the distribution of TiN inclusions on the cross section of hot-rolled plate was studied using automated scanning electron microscopy/energy-dispersive X-ray spectroscopy inclusion analysis (ASPEX 1020 system). It was found that the number density decreases sharply from the surface to the center of the hot-rolled plate, whereas the average size increases. Then, the distribution of TiN inclusions on the cross section of continuously cast slab was investigated. Similarly, numerous small-sized TiN inclusions were generated at the subsurface of the slab. The average size rapidly increased and the number density dramatically decreased from the subsurface to 1/4 thickness, while from 1/4 thickness to 1/2 thickness, the increase in average size and the decrease in number density were slight. Thermodynamics results showed that TiN inclusion was formed below the liquidus temperature, which indicated that TiN inclusions could not be formed during secondary refining. Considering the microsegregation of solute elements and the equilibrium of TiN formation during solidification, TiN precipitated in the mushy zone when the solid fraction was close to 0.2. The growth of TiN was analyzed based on the diffusion-controlled growth model. With the increase in cooling rate, the time for TiN growth decreased and the size of TiN inclusions was diminished, which revealed the size distribution of TiN inclusions in the cast slab qualitatively.


TiN inclusion Ti-stabilized ultra-pure ferrite stainless steel Distribution in slab Thermodynamics Diffusion-controlled growth model 



The authors are grateful for support from the Fundamental Research Funds for the Central Universities (Grant Nos. FRF-TP-15-001C2, FRF-TP-15-067A1 and FRF-TP-17-039A1), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM) and the High Quality steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China.


  1. [1]
    J.F. Almagro, X. Llovet, M.A. Heredia, C. Luna, R. Sánchez, Microchim. Acta 161 (2008) 323–327.CrossRefGoogle Scholar
  2. [2]
    L.Y. Sun, J.S. Li, L.F. Zhang, S.F. Yang, Y.F. Chen, J. Iron Steel Res. Int. 18 (2011) No. 11, 7–11.Google Scholar
  3. [3]
    C.W. Sinclair, J.D. Mithieux, J.H. Schmitt, Y. Bréchet, Metall. Mater. Trans. A 36 (2005) 3205–3215.CrossRefGoogle Scholar
  4. [4]
    V. Talyan, R.H. Wagoner, J.K. Lee, Metall. Mater. Trans. A 29 (1998) 2161–2172.CrossRefGoogle Scholar
  5. [5]
    S.I. Kim, Y.C. Yoo, Met. Mater. Int. 8 (2002) 7–13.CrossRefGoogle Scholar
  6. [6]
    Y. Furuya, H. Hirukawa, S. Matsuoka, S. Torizuka, H. Kuwahara, Metall. Mater. Trans. A 39 (2008) 2068–2076.CrossRefGoogle Scholar
  7. [7]
    W. Yan, Y.Y. Shan, K. Yang, Metall. Mater. Trans. A 37 (2006) 2147–2158.CrossRefGoogle Scholar
  8. [8]
    L.F. Zhang, B.G. Thomas, ISIJ Int. 43 (2003) 271–291.CrossRefGoogle Scholar
  9. [9]
    L.F. Zhang, J. Iron Steel Res. Int. 13 (2006) No. 4, 1–8.Google Scholar
  10. [10]
    W. Yang, Y. Zhang, L.F. Zhang, H.J. Duan, L. Wang, J. Iron Steel Res. Int. 22 (2015) 1069–1077.CrossRefGoogle Scholar
  11. [11]
    H. Wada, R.D. Pehlke, Metall. Mater. Trans. B 8 (1977) 443–450.CrossRefGoogle Scholar
  12. [12]
    H.Y. Choi, W.E. Slye, R.J. Fruehan, R.C. Nunnington, Metall. Mater. Trans. B 36 (2005) 537–541.CrossRefGoogle Scholar
  13. [13]
    B. Ozturk, R. Matway, R.J. Fruehan, Metall. Mater. Trans. B 26 (1995) 563–567.CrossRefGoogle Scholar
  14. [14]
    W.Y. Kim, C.O. Lee, C.W. Yun, J.J. Pak, ISIJ Int. 49 (2009) 1668–1672.CrossRefGoogle Scholar
  15. [15]
    J.O. Jo, W.Y. Kim, C.O. Lee, J.J. Pak, ISIJ Int. 51 (2011) 208–213.CrossRefGoogle Scholar
  16. [16]
    J.J. Pak, Y.S. Jeong, I.K. Hong, W.Y. Cha, D.S. Kim, Y.Y. Lim, ISIJ Int. 45 (2005) 1106–1111.CrossRefGoogle Scholar
  17. [17]
    W.Y. Kim, J.O. Jo, T.I. Chung, D.S. Kim, J.J. Pak, ISIJ Int. 47 (2007) 1082–1089.CrossRefGoogle Scholar
  18. [18]
    J.J. Pak, J.T. Yoo, Y.S. Jeong, S.J. Tae, S.M. Seo, D.S. Kim, Y.D. Lee, ISIJ Int. 45 (2005) 23–29.CrossRefGoogle Scholar
  19. [19]
    W.Y. Kim, J.O. Jo, C.O. Lee, D.S. Kim, J.J. Pak, ISIJ Int. 48 (2008) 17–22.CrossRefGoogle Scholar
  20. [20]
    M. Suzuki, R. Yamaguchi, K. Murakami, M. Nakada, ISIJ Int. 41 (2001) 247–256.CrossRefGoogle Scholar
  21. [21]
    Z.Z. Liu, J. Wei, K.K. Cai, ISIJ Int. 42 (2002) 958–963.CrossRefGoogle Scholar
  22. [22]
    Z.Z. Liu, K.J. Gu, K.K. Cai, ISIJ Int. 42 (2002) 950–957.CrossRefGoogle Scholar
  23. [23]
    H. Goto, K. Miyazawa, W. Yamada, K. Tanaka, ISIJ Int. 35 (1995) 708–714.CrossRefGoogle Scholar
  24. [24]
    H. Goto, K. Miyazawa, K. Yamaguchi, S. Ogibayashi, K. Tanaka, ISIJ Int. 34 (1994) 414–419.CrossRefGoogle Scholar
  25. [25]
    M. Wintz, M. Bobadilla, J. Lehmann, H. Gaye, ISIJ Int. 35 (1995) 715–722.CrossRefGoogle Scholar
  26. [26]
    J. Lehmann, P. Rocabois, H. Gaye, J. Non-Cryst. Solid. 282 (2001) 61–71.CrossRefGoogle Scholar
  27. [27]
    Y. Ren, Y. Wang, S. Li, L. Zhang, X. Zuo, S.N. Lekakh, K. Peaslee, Metall. Mater. Trans. B 45 (2014) 1291–1303.CrossRefGoogle Scholar
  28. [28]
    W. Yang, L.F. Zhang, X.H. Wang, Y. Ren, X.F. Liu, Q.L. Shan, ISIJ Int. 53 (2013) 1401–1410.CrossRefGoogle Scholar
  29. [29]
    Y. Liu, L.F. Zhang, H.J Duan, Y. Zhang, Y. Luo, A.N. Conejo, Metall. Mater. Trans. A 47 (2016) 3015–3025.CrossRefGoogle Scholar
  30. [30]
    J. Chen, Manual of chart and data in common use of steel making, The Metallurgical Industry Press, Beijing, China, 2010.Google Scholar
  31. [31]
    M. Hino, K. Ito, Thermodynamic data for steelmaking, Tohoku University Press, Sendai, Japan, 2010.Google Scholar
  32. [32]
    G.M. Gulliver, Metallic alloys, Griffen, London, 1922.Google Scholar
  33. [33]
    E. Scheil, Z. Metallkd. 34 (1942) 70–72.Google Scholar
  34. [34]
    T.F. Bower, H.D. Brody, M.C. Flemings, Trans. Metall. Soc. AIME 236 (1966) 624–633.Google Scholar
  35. [35]
    H. Mizukami, T. Suzuki, T. Umeda, Tetsu-to-Hagane 78 (1992) 767–773.CrossRefGoogle Scholar
  36. [36]
    T.W. Clyne, W. Kurz, Metall. Mater. Trans. A 12 (1981) 965–971.CrossRefGoogle Scholar
  37. [37]
    S.K. Choudhary, A. Ghosh, ISIJ Int. 49 (2009) 1819–1827.CrossRefGoogle Scholar
  38. [38]
    H.Y. Liu, H.L. Wang, L. Li, J.Q. Zheng, Y.H. Li, X.Y. Zeng, Ironmak. Steelmak. 38 (2011) 53–58.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations