Advertisement

Journal of Iron and Steel Research International

, Volume 26, Issue 9, pp 991–999 | Cite as

Effects of quenching and partitioning process on mechanical properties of TRIP780 steel

  • Xian-hong HanEmail author
  • Cheng-long Wang
  • Yuan-yuan Li
  • Gang Liu
Original Paper
  • 60 Downloads

Abstract

A transformation-induced plasticity (TRIP) steel was applied to test its mechanical properties in quenching and partitioning (Q&P) process. A series of Q&P experiments followed by tensile tests, Charpy impact tests, fracture morphology analyses and microstructure observations were conducted. The experimental results showed that the Q&P treatment could increase the mechanical properties of TRIP steel evidently. The strength of tested TRIP780 after Q&P process reaches more than 1500 MPa with elongation of 17.8%, which is obviously greater than that of 22MnB5 after hot stamping. The microstructure observations indicate that the good combination of high strength and plasticity of TRIP steel after Q&P process is attributed to the multi-phase microstructure of hard martensite matrix and soft retained austenite.

Keywords

Transformation-induced plasticity steel Quenching and partitioning process Hot stamping Mechanical property 

Notes

Acknowledgements

The authors would like to acknowledge the support by the National Natural Science Foundation of China under grant Nos. 51775336, U1564203, and Shanghai Pujiang Program under Grant No. 17PJD019.

References

  1. [1]
    H. Karbasian, A.E. Tekkaya, J. Mater. Process Technol. 210 (2010) 2103–2118.CrossRefGoogle Scholar
  2. [2]
    S. Ying, H. Dong, The Third Generation Auto Sheet Steel: Theory and Practice, in: Proceedings of the FISITA 2012 World Automotive Congress, Springer, 2013, pp. 933–947.Google Scholar
  3. [3]
    E. Abbasi, W.M. Rainforth, Mater. Sci. Eng. A 651 (2016) 822–830.CrossRefGoogle Scholar
  4. [4]
    H. Liu, X. Lu, X. Jin, H. Dong, J. Shi, Scripta Mater. 64 (2011) 749–752.CrossRefGoogle Scholar
  5. [5]
    J. Speer, D. Matlock, B. De Cooman, Acta. Mater. 51 (2003) 2611–2622.CrossRefGoogle Scholar
  6. [6]
    M. Karam-Abian, A. Zarei-Hanzaki, H.R. Abedi, S. Heshmati-Manesh, Mater. Sci. Eng. A 651 (2016) 233–240.CrossRefGoogle Scholar
  7. [7]
    M. Liang, Y. Shen, W. Xue, X. Lu, Mater. Sci. Technol. 25 (2017) 50–55.Google Scholar
  8. [8]
    H. Liu, X. Jin, H. Dong, J. Shi, Mater. Charact. 62 (2011) 223–227.CrossRefGoogle Scholar
  9. [9]
    K. Liu, B. Chi, Z.M. Shi, J.B. Liu, L. Jian, Adv. Mater. Res. 798 (2013) 280–285.Google Scholar
  10. [10]
    F.Y. Xu, S.B. Hu, Y. Chen, J. Mater. Sci. Eng. 31 (2013) 365–371.Google Scholar
  11. [11]
    X. Han, Y. Zhong, K. Yang, Z. Cui, J. Chen, Procedia Eng. 81 (2014) 1737–1743.CrossRefGoogle Scholar
  12. [12]
    O. Covarrubias, M. Guerrero, R. Colas, R. Petrov, L. Kestens, Y. Houbaert, Transformation behaviour of Si and Mn bearing low carbon steels, in: Proceedings of the International Conference on TRIP-aided high strength ferrous alloys, GRIPS, Aachen: Mainz 2002, 2002, pp. 227–230.Google Scholar
  13. [13]
    M. Saleh, R. Priestner, J. Mater. Process Technol. 113 (2001) 587–593.CrossRefGoogle Scholar
  14. [14]
    E.J. Seo, L. Cho, B.C.D. Cooman, Metall. Mater. Trans. A 45 (2014) 4022–4037.CrossRefGoogle Scholar
  15. [15]
    J. Morral, T. Cameron, Metall. Trans. A 8 (1977) 1817–1819.CrossRefGoogle Scholar
  16. [16]
    H. Mohrbacher, Martensitic Automotive Steel Sheet-Fundamentals and Metallurgical Optimization Strategies, in: Advanced Materials Research, Trans Tech Publications, 2015, pp. 130–142.Google Scholar
  17. [17]
    D. Oliver, Proc. Inst. Mech. Eng. 115 (1928) 827–864.CrossRefGoogle Scholar
  18. [18]
    F.H. da Costa, C.S. Fukugauchi, M. dos Santos Pereira, Metallographic Analysis of a TRIP 800 Steel Using Digital Image Processing, in: Materials Science Forum, Trans Tech Publications, 2015, pp. 236–241.Google Scholar
  19. [19]
    N. Zhong, X. Wang, Y. Rong, L. Wang, J. Mater. Sci. Technol. 22 (2006) 751–754.Google Scholar
  20. [20]
    P. Christodoulou, A. Kermanidis, D. Krizan, Int. J. Fatigue 91 (2016) 220–231.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Xian-hong Han
    • 1
    Email author
  • Cheng-long Wang
    • 1
  • Yuan-yuan Li
    • 1
  • Gang Liu
    • 2
  1. 1.National Engineering Research Center of Die and Mold CAD, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Shanghai Marine Equipment Research InstituteShanghaiChina

Personalised recommendations