Advertisement

Texture development and properties of Ti-IF steels produced by different hot-rolling processes

  • Lei-lei Hao
  • Lang Li
  • Chen-yang Qiu
  • Jian-gong Wang
  • Xun Zhou
  • Yong-lin KangEmail author
Original Article
  • 28 Downloads

Abstract

Texture is a pivotal factor for the deep drawability of interstitial free steel (IF steel). The evolution of microstructure and recrystallization texture of Ti-IF steel through the processing of hot rolling, cold rolling and annealing have been studied. The mechanical properties including strain hardening index n and plastic strain ratio r are also measured. For comparison, ferrite rolling and austenite rolling are both studied. The results show that the intensity of γ-fiber after ferrite rolling is higher than that after austenite rolling. The great balance between the {111}〈110〉 and {111}〈112〉 leads to low Δr value after annealing. The size of precipitates in ferrite rolled sample is generally larger than that in austenite rolled sample. Compared to austenite rolled sample, the ferrite rolled and annealed one has better formability and its r value reaches 2.36. Different from laboratory production, the test steels were acquired from industrial trial, and all the result can be used in industrial production directly.

Keywords

Ti-IF steel Ferrite rolling Austenite rolling Microstructure Texture 

References

  1. [1]
    Y.L. Kang, Theory and technology of processing and forming for advanced automobile steel sheets, 3rd ed., Metallurgical Industry Process, Beijing, 2009.Google Scholar
  2. [2]
    F.T. Han, Study on the effect of metallurgical factors on the microstructure and properties of hot rolled deep drawing interstitial-free (IF) steel plate, Shandong University, Jinan, 2009.Google Scholar
  3. [3]
    P. Ghosh, B. Bhattacharya, R.K. Ray, Scripta Mater. 56 (2007) 657–660.CrossRefGoogle Scholar
  4. [4]
    P. Ghosh, C. Ghosh, R.K. Ray, D. Bhattacharjee, Scripta Mater. 59 (2008) 276–278.CrossRefGoogle Scholar
  5. [5]
    K. Máthis, T. Krajňák, R. Kužel, J. Gubicza, J. Alloy. Compd. 509 (2011) 3522–3525.CrossRefGoogle Scholar
  6. [6]
    X.J. Wang, Y.L. Kang, X.H. Shang, Proceedings of the eleventh annual meeting of automotive materials branch of China Automotive Materials Engineering Society, Shanghai, 1998, pp. 167–172.Google Scholar
  7. [7]
    T. Senuma, H. Yada, R. Shimizu, J. Harase J, J. Jpn. Inst. Met. 52 (1988) 1212–1220.CrossRefGoogle Scholar
  8. [8]
    Y.H. Guo, H. Yan, Z.D. Wang, L.Q. Wei, J. Mater. Eng. Perform. 23 (2014) 1214–1222.CrossRefGoogle Scholar
  9. [9]
    J.S. Lv, L. Qiao, F. Li, H. He, H.G. Yang, F. Zhou, Steel Rolling 33 (2016) No. 1, 10–14.Google Scholar
  10. [10]
    T. Andreas, R. Kaspar, ISIJ Int. 40 (2000) 927–931.CrossRefGoogle Scholar
  11. [11]
    A. Elsner, R. Kaspar, Mater. Sci. Forum 426 (2003) 1349–1354.CrossRefGoogle Scholar
  12. [12]
    A. De Paepe, J.C. Herman, V. Leroy, Steel Res. 68 (1997) 479–486.CrossRefGoogle Scholar
  13. [13]
    T. Andreas, R. Kaspar, Steel Res. 71 (2000) 233–238.CrossRefGoogle Scholar
  14. [14]
    Y. Shen, K. Zhang, F. Cen, F. Chu, Mater. Mech. Eng. 42 (2018) No. 2, 31–34.Google Scholar
  15. [15]
    Y.D. Wang, Metal World 2 (2015) 17–20.Google Scholar
  16. [16]
    G.B. Cui, X.H. Ju, D.D. Ren, H.P. Jia, Z.Y. Wang, Journal of Chinese Electron Microscopy Society 32 (2013) 224–230.Google Scholar
  17. [17]
    C.J. Barrett, B. Wilshire, J. Mater. Process. Technol. 122 (2002) 56–62.CrossRefGoogle Scholar
  18. [18]
    S.F. Subramanian, M. Prikryl, B.D. Gaulin, D.D. Clifford, S. Benincasa, ISIJ Int. 34 (2007) 61–69.CrossRefGoogle Scholar
  19. [19]
    R. Zheng, R. Song , W. Fan, J. Alloy. Compd. 692 (2016) 503–514.CrossRefGoogle Scholar
  20. [20]
    P. Ghosh, P.K. Ray, C. Ghosh, D. Bhattacharjee, Scripta Mater. 58 (2008) 939–942.CrossRefGoogle Scholar
  21. [21]
    H. Nakamichi, F.J. Humphreys, I. Brough, J. Microscopy 230 (2008) 464–474.MathSciNetCrossRefGoogle Scholar
  22. [22]
    R.K. Ray, J.J. Jonas, R.E. Hook, Int. Mater. Rev. 39 (1994) 129–172.CrossRefGoogle Scholar
  23. [23]
    Y. Nagataki, Y. Hosoya, ISIJ Int. 36 (1996) 451–460.CrossRefGoogle Scholar
  24. [24]
    Y. Liu, J. Sun, L. Zhou, Y. Tu, F. Xing, J. Mater. Process. Technol. 140 (2003) 509–513.CrossRefGoogle Scholar
  25. [25]
    F.H. Samuel, Mater. Sci. Eng. A 142 (1991) 95–106.CrossRefGoogle Scholar
  26. [26]
    P.S. Bate, J.Q.D. Fonseca, Mater. Sci. Eng. A 380 (2004) 365–377.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Lei-lei Hao
    • 1
  • Lang Li
    • 1
  • Chen-yang Qiu
    • 1
  • Jian-gong Wang
    • 2
  • Xun Zhou
    • 2
  • Yong-lin Kang
    • 1
    Email author
  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Shougang Jingtang United Iron and Steel Co., Ltd.TangshanChina

Personalised recommendations