Influence of sigma phase on corrosion and mechanical properties of 2707 hyper-duplex stainless steel aged for short periods

  • Jian WangEmail author
  • Wan-li Chen
  • Hao-jie Meng
  • Yi-shi Cui
  • Cai-li Zhang
  • Pei-de HanEmail author
Original Paper


2707 hyper-duplex stainless steels (HDSSs) contain high contents of alloying elements (Cr, Ni, Mo and N), which may shorten the incubation period and promote both nucleation and growth of sigma (σ) phase. 2707 HDSS was first aged at different temperatures and periods of time for drawing the time–temperature–transformation profiles. The results identified the main precipitates as σ phase, with nose temperature of about 950 °C. Also, 2707 specimen was aged at 950 °C for a short time, and the morphology, distribution and amount of σ phase were examined through the scanning electron microscope and X-ray diffraction. σ phase was initially formed at the boundaries of ferrite and austenite and then transformed through the eutectoid reaction (α → σ + γ2). Finally, the precipitation and growth of σ phase in 2707 steels aged at nose temperature for a short period reduced the corrosion resistance and deteriorated the mechanical properties, and the corresponding reason was further analyzed.


Sigma phase Corrosion Mechanical property 2707 hyper-duplex stainless steel Aging treatment 



This research was supported by the National Natural Science Foundation of China (Grant No. 51371123) and Shanxi Province Science Foundation for Youths (201601D202033).


  1. [1]
    J. Verma, R.V. Taiwade, J. Manuf. Processes 25 (2017) 134–152.CrossRefGoogle Scholar
  2. [2]
    D.K. Xu, J. Xia, E.Z. Zhou, D.W. Zhang, H.B. Li, C.G. Yang, Q. Li, H. Lin, X.G. Li, K. Yang, Bioelectrochemistry 113 (2017) 1–8.CrossRefGoogle Scholar
  3. [3]
    H.B. Li, W.C. Jiao, H. Feng, X.X. Li, Z.H. Jiang, G.P. Li, L.X. Wang, G.W. Fan, P. Han, Metals 6 (2016) 223.CrossRefGoogle Scholar
  4. [4]
    H.B. Li, E.Z. Zhou, D.W. Zhang, D.K. Xu, J. Xia, C.G. Yang, H. Feng, Z.H. Jiang, X.G. Li, T.Y. Gu, K. Yang, Sci. Rep. 6 (2016) 20190.CrossRefGoogle Scholar
  5. [5]
    S.H. Byun, N. Kang, T.H. Lee, S.K. Ahn, H.W. Lee, W.S. Chang, K.M. Cho, Met. Mater. Int. 18 (2012) 201–207.CrossRefGoogle Scholar
  6. [6]
    J. Du, F. Mompiou, W.Z. Zhang, J. Mater. Sci. 52 (2017) 11688–11700.CrossRefGoogle Scholar
  7. [7]
    D. Qiu, W.Z. Zhang, Acta Mater. 56 (2008) 2003–2014.CrossRefGoogle Scholar
  8. [8]
    V. Shamanth, K.S. Ravishankar, Results Phy. 5 (2015) 297–303.CrossRefGoogle Scholar
  9. [9]
    S.H. Jeon, G.D. Song, D.H. Hur, Y.S. Park, Mater. Trans. 56 (2015) 1287–1293.CrossRefGoogle Scholar
  10. [10]
    S.M. Kim, J.S. Kim, K.T. Kim, K.T. Park, Y.S. Park, C.S. Lee, Corrosion 71 (2015) 470–482.CrossRefGoogle Scholar
  11. [11]
    K.H. Kong, S.H. Jeon, S.T. Kim, D.H. Kim, B.J. Kim, H.U. Guim, M.B. Moon, Y.S. Park, Mater. Trans. 56 (2015) 749–754.CrossRefGoogle Scholar
  12. [12]
    G. Argandona, J.F. Palacio, C. Berlanga, M.V. Biezma, P.J. Rivero, J. Pena, R. Rodriguez, Metals 7 (2017) 219.CrossRefGoogle Scholar
  13. [13]
    J.L. del Abra-Arzola, M.A. Garcia-Renteria, V.L. Cruz-Hernandez, J. Garcia-Guerra, V.H. Martinez-Landeros, L.A. Falcon-Franco, F.F. Curiel-Lopez, Wear 400–401 (2018) 43–51.CrossRefGoogle Scholar
  14. [14]
    M.A.E. Jepson, M. Rowlett, R.L. Higginson, Metall. Mater. Trans. A 48 (2017) 1491–1500.CrossRefGoogle Scholar
  15. [15]
    Y.H. Yang, B. Yan, J. Wang, J.L. Yin, J. Alloy. Compd. 509 (2011) 8870–8879.CrossRefGoogle Scholar
  16. [16]
    G. Fargas, M. Anglada, A. Mateo, J. Mater. Process. Technol. 209 (2009) 1770–1782.CrossRefGoogle Scholar
  17. [17]
    R. Magnabosco, N. Alonso-Falleiros, Corrosion 61 (2005) 130–136.CrossRefGoogle Scholar
  18. [18]
    H. Zhao, Z.Y. Zhang, H.Z. Zhang, J. Hu, J. Li, J. Alloy. Compd. 672 (2016) 147–154.CrossRefGoogle Scholar
  19. [19]
    S.H. Jeon, S.T. Kim, I.S. Lee, J.S. Kim, K.T. Kim, Y.S. Park, Corros. Sci. 66 (2013) 217–224.CrossRefGoogle Scholar
  20. [20]
    S.K. Kim, K.Y. Kang, M.S. Kim, J.M. Lee, Metals 5 (2015) 1732–1745.CrossRefGoogle Scholar
  21. [21]
    T. Liang, X.Q. Hu, X.H. Kang, D.Z. Li, Adv. Mater. Res. 684 (2013) 325–329.CrossRefGoogle Scholar
  22. [22]
    H.C. Wu, B. Yang, Y.Q. Wang, Mater. Corros. 66 (2015) 663–669.CrossRefGoogle Scholar
  23. [23]
    H. Sieurin, R. Sandstrom, Mater. Sci. Eng. A 444 (2007) 271–276.CrossRefGoogle Scholar
  24. [24]
    G. Chail, P. Kangas, in: F. Iacoviello, L. Susmel, D. Firrao, G. Ferro (Eds.), 21st European Conference on Fracture, Catania, Italy, 2016, pp. 1755–1762.Google Scholar
  25. [25]
    K.W. Chan, S.C. Tjong, Materials 7 (2014) 5268–5304.CrossRefGoogle Scholar
  26. [26]
    I. Zucato, M.C. Moreira, I.F. Machado, S.M.G. Lebrão, Mater. Res. 5 (2002) 385–389.CrossRefGoogle Scholar
  27. [27]
    D. Villalobos, A. Albiter, C. Maldonado, Matéria 14 (2009) 1061–1069.Google Scholar
  28. [28]
    J.L. Lv, T.X. Liang, L.M. Dong, C. Wang, Corros. Sci. 104 (2016) 144–151.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations