Journal of Iron and Steel Research International

, Volume 26, Issue 9, pp 909–916 | Cite as

Technological innovations of electric arc furnace bottom-blowing in China

  • Guang-sheng Wei
  • Rong ZhuEmail author
  • Yun Wang
  • Xue-tao Wu
  • Kai Dong


Nowadays, in China, the bottom-blowing technique plays an important role in accelerating the molten bath stirring and promoting the metallurgical reactions in electric arc furnace (EAF) steelmaking. The innovations of bottom-blowing technologies in EAF steelmaking were reviewed. The optimized bottom-blowing arrangement in EAF based on the furnace structure and the position of electrodes was introduced, and the fluid flow characteristics of EAF molten bath with bottom-blowing were analyzed. Furthermore, bottom-blowing CO2 in EAF can facilitate the carbon–oxygen reaction reaching equilibrium and decrease the content of nitrogen in molten steel due to its special metallurgical properties. Pulsating bottom-blowing in EAF can effectively improve the molten bath stirring through the action of the unsteady bottom-blowing gas streams, which could make the fluid flow field more disorderly than the steady bottom-blowing. And submerged O2 injection with CO2 in EAF can noticeably strengthen the EAF molten bath stirring, increase the production efficiency and improve the molten steel quality.


Electric arc furnace Bottom-blowing CO2 Pulsating bottom-blowing EAF combined blowing technology Submerged O2 injection with CO2 



The authors would like to express their thanks for the support by the National Natural Science Foundation of China (No. 51734003).


  1. [1]
    Y.N. Toulouevski, I.Y. Zinurov, Innovation in electric arc furnaces, Springer, Berlin, 2010.CrossRefGoogle Scholar
  2. [2]
  3. [3]
    L.Z. Yang, R. Zhu, G.H. Ma, High Temp. Mat. Pr-Isr. 35 (2016) 195–200.Google Scholar
  4. [4]
    L.Z. Yang, T. Jiang, G.H. Li, Y.F. Guo, High Temp. Mat. Pr-Isr. 36 (2017) 615–621.Google Scholar
  5. [5]
    H. Odenthal, A. Kemminger, F. Krause, L. Sankowski, N. Uebber, N. Vogl, Steel Res. Int. 89 (2018) 1700098.CrossRefGoogle Scholar
  6. [6]
    G. Wei, R. Zhu, T. Cheng, K. Dong, L. Yang, X. Wu, Metall. Mater. Trans. B 49 (2018) 361–374.CrossRefGoogle Scholar
  7. [7]
    G.S. Wei, R. Zhu, T. Cheng, F. Zhao, J. Iron Steel Res. Int. 23 (2016) 997–1006.CrossRefGoogle Scholar
  8. [8]
    C.L. He, R. Zhu, K. Dong, Y.Q. Qiu, K.M. Sun, G.L. Jiang, Ironmak. Steelmak. 38 (2011) 291–296.CrossRefGoogle Scholar
  9. [9]
    M. Kirschen, R. Ehrengruber, K.M. Zettl, RHI Bulletin 5 (2016) No. 1, 8–13.Google Scholar
  10. [10]
    F. Liu, R. Zhu, K. Dong, X. Bao, S. Fan, ISIJ Int. 55 (2015) 2365–2373.CrossRefGoogle Scholar
  11. [11]
    L.F. Li, M.F. Jiang, Z.Y. Duan, Steelmaking 12 (1996) No. 2, 49–52.Google Scholar
  12. [12]
    L.F. Li, M.F. Jiang, Res. Iron Steel 24 (1996) No. 3, 3–6.Google Scholar
  13. [13]
    B. Li, ISIJ Int. 40 (2000) 863–869.CrossRefGoogle Scholar
  14. [14]
    G. Wei, R. Zhu, K. Dong, G. Ma, T. Cheng, Metall. Mater. Trans. B 47 (2016) 3066–3079.CrossRefGoogle Scholar
  15. [15]
    K. Dong, R. Zhu, W.J. Liu, Adv. Mater. Res. 361–363 (2012) 639–643.Google Scholar
  16. [16]
    H. Wang, R. Zhu, R.Z. Liu, D. Shou, G.J. Xie, S.L. Fan, Y.L. Gu, Industrial Heating 43 (2014) No. 2, 12–17.Google Scholar
  17. [17]
    G. Wei, R. Zhu, K. Dong, Z. Li, L. Yang, X. Wu, Ironmak. Steelmak. 45 (2018) 839–846.CrossRefGoogle Scholar
  18. [18]
    G. Wei, R. Zhu, X. Wu, K. Dong, L. Yang, R. Liu, JOM 70 (2018) 969–976.CrossRefGoogle Scholar
  19. [19]
    H. Wang, R. Zhu, X. Wang, Z. Li, Miner. Process. Extract. Metall.126 (2017) 47–53.CrossRefGoogle Scholar
  20. [20]
    P. He, R.S. Zhang, K.W. Deng, J. Iron Steel Res. 8 (1988) No. S1, 107–113.Google Scholar
  21. [21]
    M.K. Cao, Shanghai Metals 20 (1998) No. 2, 34–37.Google Scholar
  22. [22]
    K. Dong, J.W. Li, C.F. Zhu, Ind. Heat. 40 (2011) No. 1, 60–62.Google Scholar
  23. [23]
    G. Brooks, G. Irons, D. Anghelina, in: 4th High Temperature Processing Symposium, Swinburne University of Technology, Hawthorn, Victoria, Australia, 2012, pp. 13–15.Google Scholar
  24. [24]
    J. Fu, S. Zhou, P. Wang, L. Di, J. Zhu, J. Mater. Sci. Technol. 17 (2001) 233–236.Google Scholar
  25. [25]
    Z.Z. Li, R. Zhu, R.Z. Liu, X.L. Wang, Iron and Steel 51 (2016) No. 9, 40–45.Google Scholar
  26. [26]
    N. Sumida, Y. Oguchi, T. Fujii, T. Fujimura, A. Ueda, Iron and Steel 19 (1984) No. 8, 66–70.Google Scholar
  27. [27]
    C. Yi, R. Zhu, B.Y. Chen, C.R. Wang, J.X. Ke, ISIJ Int. 49 (2009) 1694–1699.CrossRefGoogle Scholar
  28. [28]
    G. Wei, R. Zhu, T. Cheng, K. Dong, L. Yang, T. Tang, X. Wu, ISIJ Int. 58 (2018) 842–851.CrossRefGoogle Scholar
  29. [29]
    R. Zhu, G.S. Wei, T.P. Tang, Steelmaking 34 (2018) No. 1, 10–19.Google Scholar
  30. [30]
    G. Ma, L. Yang, R. Zhu, Z. Li, X. Wang, G. Wei, T. Cheng, in: Materials Science and Technology Conference and Exhibition 2016, Association for Iron and Steel Technology, AISTECH, 2016, pp. 555–563.Google Scholar
  31. [31]
    L.Z. Yang, R. Zhu, K. Dong, W.J. Liu, G.H. Ma, Adv. Mater. Res. 881–883 (2014) 1540–1544.CrossRefGoogle Scholar
  32. [32]
    G. Ma, R. Zhu, K. Dong, Z. Li, R. Liu, G. Wei, Ironmak. Steelmak. 43 (2016) 594–599.CrossRefGoogle Scholar
  33. [33]
    G.H. Ma, R. Zhu, R.Z. Liu, F.H. Liu, K. Dong, G.S. Wei, Industrial Heating 44 (2015) No. 2, 1–4.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Guang-sheng Wei
    • 1
    • 2
  • Rong Zhu
    • 1
    • 2
    Email author
  • Yun Wang
    • 1
    • 2
  • Xue-tao Wu
    • 1
  • Kai Dong
    • 1
    • 2
  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Beijing Key Laboratory of Research Center of Special Melting and Preparation of High-End Metal MaterialsUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations