High-temperature fatigue behavior of 15CrNbTi ferritic stainless steel

  • Tian-long Liu
  • Li-jia ChenEmail author
  • Hong-yun Bi
  • Xin Che
Original Paper


In order to investigate the high-temperature fatigue and fatigue–creep behavior of 15CrNbTi ferritic stainless steel at 800 °C, fatigue tests without holding time in laboratory air and with 10 s holding time induced at maximum cyclic stress under argon atmosphere were conducted on an electrohydraulic servo fatigue testing machine. In addition, the morphologies of fatigue fracture surfaces were observed, and the precipitates and dislocation substructures were characterized. The experimental results show that the fatigue limit of 15CrNbTi ferritic stainless steel is 30 MPa at 800 °C. The fatigue life of the experimental steel obviously decreases if holding time of 10 s is introduced at maximum cyclic stress. Under two test conditions, the fatigue cracks transgranularly initiate at the free surface of fatigue specimens and then propagate in a transgranular mode. It is demonstrated that three kinds of precipitates including (Nb, Ti)C phase, Fe2Nb phase and Fe3Nb3C phase can be observed in 15CrNbTi ferritic stainless steel, and the Fe2Nb and Fe3Nb3C phases are mainly precipitated during the fatigue tests. In the fatigue deformation area, both dislocation tangles and dislocation arrays are observed. Furthermore, the sub-grains which form during the cycling deformation with holding time of 10 s are also found. Moreover, the formation of sub-grains leads to the deterioration of the fatigue life of 15CrNbTi steel.


Ferritic stainless steel High-temperature fatigue Holding time Fatigue fracture Precipitate Dislocation substructure 



This work was financially supported by the National Natural Science Foundation of China (Nos. 51134010 and U1660205).


  1. [1]
    T. Goswami, Int. J. Fatigue 21 (1999) 55–76.CrossRefGoogle Scholar
  2. [2]
    T.L. Liu, L.J. Chen, H.Y. Bi, X. Che, Acta Metall. Sin. (Engl. Lett.) 21 (2014) 452–456.CrossRefGoogle Scholar
  3. [3]
    F. Gao, F.X. Yu, H.T. Liu, Z.Y. Liu, J. Iron Steel Res. Int. 22 (2015) 827–836.CrossRefGoogle Scholar
  4. [4]
    R.M. Wang, S.Z. Luo, L.Z. Jiang, J. Iron Steel Res. Int. 21 (2014) 131–134.CrossRefGoogle Scholar
  5. [5]
    X.Z. Huang, D. Wang, Y.T. Yang, J. Iron Steel Res. Int. 22 (2015) 1062–1068.CrossRefGoogle Scholar
  6. [6]
    Y.J. Li, Z.D. Zou, M. Thompson, J. Mater. Sci. Technol. 12 (1996) 452–456.Google Scholar
  7. [7]
    K. Shanmugam, A.K. Lakshminarayanan, V. Balasubramanian, J. Mater. Sci. Technol. 25 (2009) 181–186.Google Scholar
  8. [8]
    N. Nabiran, S. Klein, S. Weber, W. Theisen, Metall. Mater. Trans. A 46 (2015) 102–114.CrossRefGoogle Scholar
  9. [9]
    Y.T. Shan, X.H. Luo, X.Q. Hu, S. Liu, J. Mater. Sci. Technol. 27 (2011) 352–358.CrossRefGoogle Scholar
  10. [10]
    Y.T. Xu, Z.P. Chen, M.T. Gong, D. Shu, Y.M. Tian, X.Q. Yuan, J. Iron Steel Res. Int. 21 (2014) 583–588.CrossRefGoogle Scholar
  11. [11]
    N. Fujita, K. Ohmura, A. Yamamoto, Mater. Sci. Eng. A 351 (2003) 272–281.CrossRefGoogle Scholar
  12. [12]
    F. Chassagne, J.D. Mithieux, J.H. Schmitt, Steel Res. Int. 77 (2006) 680–685.CrossRefGoogle Scholar
  13. [13]
    A. Miyazaki, K. Takao, O. Furukimi, ISIJ Int. 42 (2002) 916–920.CrossRefGoogle Scholar
  14. [14]
    T.K. Ha, H.T. Jeong, H.J. Sung, J. Mater. Process. Technol. 187–188 (2007) 555–558.CrossRefGoogle Scholar
  15. [15]
    Y. Uematsu, M. Akita, M. Nakajima, K. Tokaji, Int. J. Fatigue 30 (2008) 642–648.CrossRefGoogle Scholar
  16. [16]
    T. Yamagishi, M. Akita, M. Nakajima, Y. Uematsu, K. Tokaji, Proc. Eng. 2 (2010) 275–281.CrossRefGoogle Scholar
  17. [17]
    K. Makhlouf, J.W. Jones, Int. J. Fatigue 14 (1992) 97–104.CrossRefGoogle Scholar
  18. [18]
    K. Makhlouf, J.W. Jones, Int. J. Fatigue 15 (1993) 163–171.CrossRefGoogle Scholar
  19. [19]
    B. Fournier, M. Sauzay, C. Caёs, M. Noblecourt, M. Mottot, A. Bougault, V. Rabeau, A. Pineau, Int. J. Fatigue 30 (2008) 649–662.CrossRefGoogle Scholar
  20. [20]
    B. Fournier, M. Sauzay, C. Caёs, M. Noblecourt, M. Mottot, A. Bougault, V. Rabeau, A. Pineau, Int. J. Fatigue 30 (2008) 663–676.CrossRefGoogle Scholar
  21. [21]
    D.A. Miller, C.D. Hamm, L.J. Phillips, Mater. Sci. Eng. 53 (1982) 233–244.CrossRefGoogle Scholar
  22. [22]
    W.J. Plumbridge, M.S. Dean, D.A. Miller, Fatigue Eng. Mater. Struct. 5 (1982) 101–114.CrossRefGoogle Scholar
  23. [23]
    Z.G. Wang, C. Laird, K. Rahka, Mater. Sci. Eng. 73 (1985) 113–129.CrossRefGoogle Scholar
  24. [24]
    G.M. Sim, J.C. Ahn, S.C. Hong, K.J. Lee, K.S. Lee, Mater. Sci. Eng. A 396 (2005) 159–165.CrossRefGoogle Scholar
  25. [25]
    J.C. Ahn, G.M. Sim, K.S. Lee, Mater. Sci. Forum. 475–479 (2005) 191–194.CrossRefGoogle Scholar
  26. [26]
    J. Hald, Z. Kubon, in: A. Strang, D.J. Gooch (Eds.), Microstructural development and stability in high chromium ferritic power plant steels, Institute of Materials, Cambridge, 1997, pp. 159–178.Google Scholar
  27. [27]
    D.C. Stouffer, L.T. Dame, Inelastic deformation of metals, John Wiley & Sons, New York, 1996.Google Scholar
  28. [28]
    M.C. Carroll, L.J. Carroll, Metall. Mater. Trans. A 44 (2013) 3592–3607.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringShenyang University of TechnologyShenyangChina
  2. 2.Baosteel Central Research InstituteBaosteel Co., Ltd.ShanghaiChina

Personalised recommendations