Journal of Iron and Steel Research International

, Volume 25, Issue 10, pp 1062–1067 | Cite as

Microstructure and mechanical properties of nanobainitic steel subjected to multiple isothermal heat treatments

  • Ning Liu
  • Xin Zhang
  • Jing Ding
  • Jun He
  • Fu-xing YinEmail author
Original Paper


Nanostructured bainite in 62MnSiCr steel was prepared by two-stage transformation process at different temperatures for less than 2 h. Microstructures, phase distribution and mechanical properties of the obtained steel were investigated. The results showed that the thickness of bainite plate and the amount of retained austenite decreased obviously after the two-stage transformation, while the carbon concentration in the retained austenite showed a small change. With increase in the second holding temperature within the bainite transformation range, all of them increased slightly. The additional formation of bainite at the second transformation stage is beneficial to refining the austenite and further enriching it with carbon, resulting in the enhancement of the mechanical stability. Bainite transformed in two-stage process showed a better comprehensive performance. Absorbed impact energy of 88 J and an ultimate tensile strength of 1818 MPa have been achieved by isothermal heat treatment at 300 °C followed by 260 °C. Meanwhile, there was a slight change in mechanical properties when the second transformation temperature varied from 260 to 220 °C.


Nanostructured bainite Heat treatment Microstructure Mechanical property 



This work was financially supported by the Natural Science Foundation of Hebei Province of China under Grant Nos. QN2015259, E2016202121 and BJ2017009.


  1. [[1]
    H.K.D.H. Bhadeshia, Proc. R. Soc. A 466 (2009) 3–18.CrossRefGoogle Scholar
  2. [2]
    H.K.D.H. Bhadeshia, Bainite in steels, Institute of Materials, London, 2001.Google Scholar
  3. [3]
    Y. Huang, X.L. Zhang, W.N. Liu, X.M. Wang, J.K. Han, J. Iron Steel Res. Int. 23 (2016) 253–260.CrossRefGoogle Scholar
  4. [4]
    Y.W. Wang, C. Feng, F.Y. Xu, B.Z. Bai, H.S. Fang, J. Iron Steel Res. Int. 17 (2010) No. 1, 49–53.CrossRefGoogle Scholar
  5. [5]
    D.Q. Kong, Q.S. Liu, Z.J. Dong, J. Iron Steel Res. Int. 20 (2013) No. 3, 45–49.CrossRefGoogle Scholar
  6. [6]
    C. Garcia-Mateo, F.G. Caballero, ISIJ Int. 45 (2005) 1736–1740.CrossRefGoogle Scholar
  7. [7]
    C. Garcia-Mateo, F.G. Caballero, T. Sourmail, M. Kuntz, J. Cornide, V. Smanio, R. Elvira, Mater. Sci. Eng. A 549 (2012) 185–192.CrossRefGoogle Scholar
  8. [8]
    F.G. Caballero, C. Garcia-Mateo, M.K. Miller, JOM 66 (2014) 747–755.CrossRefGoogle Scholar
  9. [9]
    M. Soliman, H. Mostafa, A.S. El-Sabbagh, H. Palkowski, Mater. Sci. Eng. A 527 (2010) 7706–7713.CrossRefGoogle Scholar
  10. [10]
    F.G. Caballero, C. Garcia-Mateo, M.K. Miller, Mater. Sci. Technol. 31 (2015) 764–772.CrossRefGoogle Scholar
  11. [11]
    M. Zhang, Y.H. Wang, C.L. Zheng, F.C. Zhang, T.S. Wang, Mater. Des. 62 (2014) 168–174.CrossRefGoogle Scholar
  12. [12]
    C. Sun, S.W. Yang, R. Zhang, X. Wang, H. Guo, J. Iron Steel Res. Int. 22 (2015) 60–66CrossRefGoogle Scholar
  13. [13]
    S. Golchin, B. Avishan, S. Yazdani, Mater. Sci. Eng. A 656 (2016) 94–101.CrossRefGoogle Scholar
  14. [14]
    J.G. He, A.M. Zhao, C. Zhi, H.L. Fan, Scripta Mater. 107 (2015) 71–74.CrossRefGoogle Scholar
  15. [15]
    W. Gong, Y. Tomota, Y. Adachi, A.M. Paradowska, J.F. Kelleher, S.Y. Zhang, Acta Mater. 61 (2013) 4142–4154.CrossRefGoogle Scholar
  16. [16]
    X.L. Wang, K.M. Wu, F. Hu, L. Yu, X.L. Wan, Scripta Mater. 74 (2014) 56–59.CrossRefGoogle Scholar
  17. [17]
    H.S. Hasan, M. Peet, H.K.D.H. Bhadeshia, S. Wood, E. Booth, Mater. Sci. Technol. 26 (2010) 453–456.CrossRefGoogle Scholar
  18. [18]
    G. Papadirnitriou, G. Fourlaris, J. Phys. IV France 7 (1997) C5-131–136Google Scholar
  19. [19]
    K. Hase, C. Garcia-Mateo, H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 438–440 (2006) 145–148.CrossRefGoogle Scholar
  20. [20]
    V.T. Duong, Y.Y. Song, K.S. Park, H.K.D.H. Bhadeshia, D.W. Suh, Metall. Mater. Trans. A 45 (2014) 4201–4209CrossRefGoogle Scholar
  21. [21]
    X.Y. Long, J. Kang, B. Lv, F.C. Zhang, Mater. Des. 64 (2014) 237–245.CrossRefGoogle Scholar
  22. [22]
    C. Garcia-Mateo, F.G. Caballero, H.K.D.H. Bhadeshia, ISIJ Int. 43 (2003) 1821–1825.CrossRefGoogle Scholar
  23. [23]
    F.G. Caballero, H.W. Yen, M.K. Miller, J.R. Yang, J. Cornide, C. Garcia-Mateo, Acta Mater. 59 (2011) 6117–6123.CrossRefGoogle Scholar
  24. [24]
    F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, P. Brown, Mater. Sci. Technol. 18 (2002) 279–284.CrossRefGoogle Scholar
  25. [25]
    D.J. Dyson, J. Iron Steel Inst. 208 (1970) 469–474.Google Scholar
  26. [26]
    F.G. Caballero, C. Garcia-Mateo, M.J. Santofimia, M.K. Miller, C.G. de Andrés, Acta Mater. 57 (2009) 8–17.CrossRefGoogle Scholar
  27. [27]
    S. Chen, G.Z. Wang, C. Liu, C.C. Wang, X.M. Zhao, W. Xu, J. Iron Steel Res. Int. 24 (2017) 1095–1103.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Ning Liu
    • 1
  • Xin Zhang
    • 1
  • Jing Ding
    • 1
  • Jun He
    • 1
  • Fu-xing Yin
    • 1
    Email author
  1. 1.School of Material Science and Engineering and Research Institute for Energy Equipment MaterialsHebei University of TechnologyTianjinChina

Personalised recommendations