Journal of Iron and Steel Research International

, Volume 25, Issue 10, pp 1017–1025 | Cite as

Strengthening granulation behavior of specularite concentrates based on matching of characteristics of iron ores in sintering process

  • Sheng-li Wu
  • Zhi-gang QueEmail author
  • Kai-lang Li
Original Paper


Specularite concentrates have advantages of high ferrous grade, less harmful impurities and low price. However, the small size and poor granulation behavior of specularite concentrates consequently deteriorate the permeability of sinter bed and reduce the productivity of sinter, resulting in un-effective utilization in sintering process. The granulation experiments were carried out when specularite concentrates matched with five kinds of fine or coarse ores, and the effects of surface property and wettability of fine or coarse ores on granulation behavior of specularite concentrates were investigated. Then, the optimized ore blending recipes were proposed to strengthen the granulation behavior of specularite concentrates. The results indicated that the growth index increased with increasing the specific surface area of fine ores and had a positive linear correlation with the circularity degree of coarse ores, whereas negative correlations exist between the growth index and the contact angle of fine or coarse ores. Compared with the scheme of blended ores containing 15 mass% specularite concentrates, the growth index increased by approximately 22% in the case of using Ore-A and Ore-E with greater surface property and higher wettability to replace all of Ore-B and half of Ore-D, respectively. Furthermore, the vertical sintering speed and the productivity of sinter improved by approximately 23% and 20%, respectively.


Iron ore sinter Granulation behavior Specularite concentrate Surface property Wettability 


  1. [1]
    K. Nagano, Tetsu-to-Hagané 90 (2004) 51–60.CrossRefGoogle Scholar
  2. [2]
    M. Naito, K. Takeda, Y. Matsui, Tetsu-to-Hagané 100 (2014) 2–30.CrossRefGoogle Scholar
  3. [3]
    A.G. Waters, J.D. Litster, S.K. Nicol, ISIJ Int. 29 (1989) 274–283.CrossRefGoogle Scholar
  4. [4]
    J.D. Litster, A.G. Waters, Powder Technol. 55 (1988) 141–151.CrossRefGoogle Scholar
  5. [5]
    L.S. Yuan, X.H. Fan, M. Gan, G.M. Yang, Y. Wang, J. Iron Steel Res. Int. 21 (2014) 905–909.CrossRefGoogle Scholar
  6. [6]
    T. Maki, I. Sekiguchi, ISIJ Int. 49 (2009) 631–636.CrossRefGoogle Scholar
  7. [7]
    J. Khosa, J. Manuel, ISIJ Int. 47 (2007) 965–972.CrossRefGoogle Scholar
  8. [8]
    P.C. Kapur, P. Kapur, D.W. Fuerstenau, Int. J. Miner. Process. 39 (1993) 239–250.CrossRefGoogle Scholar
  9. [9]
    F. Aratani, T. Kodama, K. Nakanishi, Tetsu-to-Hagané 69 (1983) S717.Google Scholar
  10. [10]
    A.M. Nyembwe, R.D. Cromarty, A.M. Garbers-Craig, Miner. Process. Extract Metall. 125 (2016) 178–186.CrossRefGoogle Scholar
  11. [11]
    L.X. Yang, D. Witchard, ISIJ Int. 38 (1998) 1069–1076.CrossRefGoogle Scholar
  12. [12]
    J. Pan, B.J. Shi, D.Q. Zhu, X.B. Li, Iron and Steel 49 (2014) No. 9, 21–28.Google Scholar
  13. [13]
    S.Z. He, H.L. Feng, X.J. Gan, M. Gan, J. Iron Steel Res. 28 (2016) No. 9, 10–16.Google Scholar
  14. [14]
    D.Q. Zhu, X.B. Li, J. Pan, B.J. Shi, Iron and Steel 50 (2015) No. 7, 8–14.Google Scholar
  15. [15]
    Z.H. Li, Y.Q. Liu, J. Li, X.D. Cui, G.S. Zhao, J. Hebei Polytechnic Univ. (Natural Science Edition) 31 (2009) No. 3, 16–24.Google Scholar
  16. [16]
    C. Wang, E. Hou, L. Wang, S. Yu, B. Xing, in: National Conference Proceedings on Raw Iron. The Chinese Society for Metals, Kunming, 2005, pp 111–116.Google Scholar
  17. [17]
    D. Zhu, Z. Guo, J. Pan, F. Zhang, Ironmak. Steelmak. 43 (2016) 721–729.CrossRefGoogle Scholar
  18. [18]
    J. Pan, B. Shi, D. Zhu, Y. Mo, ISIJ Int. 56 (2016) 777–785.CrossRefGoogle Scholar
  19. [19]
    J. Pan, D.Q. Zhu, P. Hamilton, X.L. Zhou, L. Wang, ISIJ Int. 53 (2013) 2013–2017.CrossRefGoogle Scholar
  20. [20]
    D.Q. Zhu, Z.Y. Wang, J. Pan, J. Li, X.F. Xu, Iron and Steel 42 (2007) No. 1, 12–16.Google Scholar
  21. [21]
    Y. Hida, K. Ito, J. Okazaki, M. Sasaki, Y. Umezu, Tetsu-to-Hagané 68 (1982) 2166–2173.CrossRefGoogle Scholar
  22. [22]
    H. Matsuoka, H. Souma, M. Wajima, O. Mikuni, B. Nakagawa, Tetsu-to-Hagané 68 (1982) S717.Google Scholar
  23. [23]
    T. Maeda, C. Fukumoto, T. Matsumura, K. Nishioka, M. Shimizu, Tetsu-to-Hagané 92 (2006) 721–727.CrossRefGoogle Scholar
  24. [24]
    M. Kawazu, S. Suzuki, K. Sato, S. Sakurai, Tetsu-to-Hagané 64 (1978) S487.CrossRefGoogle Scholar
  25. [25]
    S. Sato, M. Yoshinaga, M. Ichidate, T. Kawaguchi, Tetsu-to-Hagané 68 (1982) 2174–2181.CrossRefGoogle Scholar
  26. [26]
    M. Matsumura, T. Kawaguchi, Tetsu-to-Hagané 87 (2001) 290–297.CrossRefGoogle Scholar
  27. [27]
    H. Mao, R. Zhang, X. Lv, C. Bai, X. Huang, ISIJ Int. 53 (2013) 1491–1496.CrossRefGoogle Scholar
  28. [28]
    L.C. Niu, X.H. Sun, X.B. Zuo, Concrete 1 (2012) 10–12.Google Scholar
  29. [29]
    S.L. Wu, J. Zhu, J.C. Bei, G.L. Zhang, X.B. Zhai, Int. J. Miner. Metall. Mater. 22 (2015) 907–916.CrossRefGoogle Scholar
  30. [30]
    T.T. Chau, Miner. Eng. 22 (2009) 213–219.CrossRefGoogle Scholar
  31. [31]
    S. Wu, J. Zhu, J. Fan, G. Zhang, S. Chen, ISIJ Int. 53 (2013) 1561–1570.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations