Advertisement

A comparison of deformation, microstructure, mechanical properties and formability of SUS436L stainless steel in tandem and reversible cold rolling processes

  • Wen-tao Wang
  • Jiao Zhang
  • Feng-li SuiEmail author
  • Zhi-xia Zhang
  • Hong-yun Bi
Original Paper
  • 38 Downloads

Abstract

A comparison was made for the deformation, microstructure, mechanical properties and formability of SUS436L stainless steel in tandem and reversible cold rolling processes. At first, the thermophysical parameters and stress–strain curves of SUS436L steel were measured in temperature range of 293–573 K and a flow stress model was regressed from the data of these curves. An analytical model based on the elasto-plastic finite element method was then established to simulate the tandem and the reversible cold rolling processes of SUS436L stainless steel strip where the flow stress model was introduced. The difference in shear strain distribution, microstructure, mechanical properties and formability of SUS436L steel strip in the two rolling processes was analyzed. The results showed that the larger shear strain, the enhanced intensity of γ fiber texture and the excellent formability of the strip can be easily obtained in the tandem rolling process with the larger work roll rather than the reversible rolling process with the smaller work roll.

Keywords

SUS436L stainless steel Cold rolling Finite element method Shear deformation γ fiber texture 

Notes

Acknowledgements

The authors are grateful for the joint financial support from the National Natural Science Foundation of China and Baowu Steel Group Co., Ltd. (Grant No. U1660205).

References

  1. [1]
    M.Y. Huh, J.H. Lee, S.H. Park, O. Engler, D. Raabe, Steel Res. Int. 76 (2005) 797–806.CrossRefGoogle Scholar
  2. [2]
    H.T. Liu, Z.Y. Liu, G.D. Wang, ISIJ Int. 49 (2009) 890–896.CrossRefGoogle Scholar
  3. [3]
    X.M. You, Z.H. Jiang, H.L. Li, J. Iron Steel Res. Int. 14 (2007) No. 4, 24–30.CrossRefGoogle Scholar
  4. [4]
    Y.T. Shan, X.H. Luo, X.Q. Hu, S. Liu, J. Mater. Sci. Technol. 27 (2011) 352–358.CrossRefGoogle Scholar
  5. [5]
    Y.T. Chiu, C.K. Lin, J. Power Sources 198 (2012) 149–157.CrossRefGoogle Scholar
  6. [6]
    D. Raabe, K. Lücke, Mater. Sci. Technol. 9 (1993) 302–312.CrossRefGoogle Scholar
  7. [7]
    F. Gao, Z.Y. Liu, H.T. Liu, G.D. Wang, Mater. Charact. 75 (2013) 93–100.CrossRefGoogle Scholar
  8. [8]
    N. Fujita, K. Ohmura, M. Kikuchi, T. Suzuki, S. Funaki, I. Hiroshige, Scripta Mater. 35 (1996) 705–710.CrossRefGoogle Scholar
  9. [9]
    L. Gardner, Prog. Struct. Eng. Mater. 7 (2005) 45–55.CrossRefGoogle Scholar
  10. [10]
    J.K. Kim, Y.H. Kim, S.H. Uhm, J.S. Lee, K.Y. Kim, Corros. Sci. 51 (2009) 2716–2723.CrossRefGoogle Scholar
  11. [11]
    X.F. Kang, The ferritic stainless steel, Metallurgical Industry Press, Beijing, 2012.Google Scholar
  12. [12]
    C. Zhang, Z.Y. Liu, Y. Xu, G.D. Wang, J. Mater. Process. Technol. 212 (2012) 2183–2192.CrossRefGoogle Scholar
  13. [13]
    S.M. Kim, Y.S. Chun, S.Y. Won, Y.H. Kim, C.S. Lee, Metall. Mater. Trans. A 44 (2013) 1331–1339.CrossRefGoogle Scholar
  14. [14]
    M.D. Stone, Iron Steel Eng. 30 (1953) 1–15.Google Scholar
  15. [15]
    B. Ma, C.S. Li, J.K. Wang, B. Cai, F.L. Sui, Mater. Sci. Eng. A 671 (2016) 190–197.CrossRefGoogle Scholar
  16. [16]
    L. Hao, H.S. Di, D.Y. Gong, J. Iron Steel Res. Int. 20 (2013) No. 5, 34–37.CrossRefGoogle Scholar
  17. [17]
    F. Gao, F.X. Yu, H.T. Liu, G.D. Wang, J. Iron Steel Res. Int. 22 (2015) 827–836.CrossRefGoogle Scholar
  18. [18]
    F.L. Sui, Y. Zuo, J. Zhao, B.G. Ma, Acta Metall. Sin. (Engl. Lett.) 27 (2014) 494–500.CrossRefGoogle Scholar
  19. [19]
    T. Inoue, S. Torizuka, K. Nagai, Mater. Sci. Technol. 18 (2002) 1007–1015.CrossRefGoogle Scholar
  20. [20]
    Y. Yazawa, Y. Ozaki, Y. Kato, O. Furukimi, JSAE Rev. 24 (2003) 483–488.CrossRefGoogle Scholar
  21. [21]
    J.I. Hamada, N. Ono, H. Inoue, ISIJ Int. 51 (2011) 1740–1748.CrossRefGoogle Scholar
  22. [22]
    F. Gao, Z.Y. Liu, H.T. Liu, G.D. Wang, J. Iron Steel Res. Int. 20 (2013) No. 4, 31–38.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  1. 1.School of Metallurgical EngineeringAnhui University of TechnologyMa’anshanChina
  2. 2.State Key Laboratory of Development and Application Technology of Automobile SteelsBaowu Steel Group Co., Ltd.ShanghaiChina

Personalised recommendations