Advertisement

Journal of Iron and Steel Research International

, Volume 25, Issue 10, pp 1086–1093 | Cite as

Precipitation kinetics of complex precipitate in multicomponent systems

  • Yong Yang
  • Tian-rui Li
  • Tao Jia
  • Zhao-dong Wang
Original Paper
  • 50 Downloads

Abstract

A kinetic model based on the classical nucleation and growth theory has been proposed to predict the precipitation behavior of complex precipitate. The method for calculating absolute solution temperature, which is an important guidance for determining solution treatment temperature, is also proposed based on thermodynamic model. In the model, nucleation of the second phase is assumed to be controlled by the effective diffusion, which involves the bulk diffusion and dislocation pipe diffusion, and growth is controlled by the bulk diffusion of forming elements. The interfacial energy of complex precipitate is calculated by the linear interpolation method, and the effects of alloying elements on precipitation behavior are manifested using weighted means of their diffusivities and concentration. The predictions were compared with the experimental measurements, and a good agreement was obtained.

Keywords

Complex precipitate Carbide Kinetic model Nucleation and growth theory Absolute solution temperature 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51234002).

References

  1. [1]
    H. Adrian, Mater. Sci. Technol. 8 (1992) 406–420.CrossRefGoogle Scholar
  2. [2]
    P.R. Rios, Mater. Sci. Eng. A 142 (1991) 87–94.CrossRefGoogle Scholar
  3. [3]
    K. Xu, B.G. Thomas, R. O’malley, Metall. Mater. Trans. A 42 (2010) 524–539.CrossRefGoogle Scholar
  4. [4]
    Y. Xu, D. Tang, Y. Song, Steel Res. Int. 84 (2013) 560–564.CrossRefGoogle Scholar
  5. [5]
    A. Deschamps, F. Danoix, F. De Geuser, T. Epicier, H. Leitner, M. Perez, Mater. Lett. 65 (2011) 2265–2268.CrossRefGoogle Scholar
  6. [6]
    B. Dutta, E. Valdes, C.M. Sellars, Acta Metall. Mater. 40 (1992) 653–662.CrossRefGoogle Scholar
  7. [7]
    Z. Wang, X. Sun, Z. Yang, Q. Yong, C. Zhang, Z. Li, Y. Weng, Mater. Sci. Eng. A 561 (2013) 212–219.CrossRefGoogle Scholar
  8. [8]
    M. Nöhrer, W. Mayer, S. Primig, S. Zamberger, E. Kozeschnik, H. Leitner, Metall. Mater. Trans. A 45 (2014) 4210–4219.CrossRefGoogle Scholar
  9. [9]
    A.J. Craven, K. He, L.A.J. Garvie, T.N. Baker, Acta Mater. 48 (2000) 3857–3868.CrossRefGoogle Scholar
  10. [10]
    X.D. Huo, L.J. Li, Z.W. Peng, S.J. Chen, J. Iron Steel Res. Int. 23 (2016) 593–601.CrossRefGoogle Scholar
  11. [11]
    Y.J. Hui, Y. Yu, L. Wang, C. Wang, W.Y. Li, B. Chen, J. Iron Steel Res. Int. 23 (2016) 385–392.CrossRefGoogle Scholar
  12. [12]
    H.B. Pan, M.J. Zhang, W.M. Liu, J. Yan, H.T. Wang, C.S. Xie, Z. Guo, J. Iron Steel Res. Int. 24 (2017) 536–543.CrossRefGoogle Scholar
  13. [13]
    M. Kapoor, R. O’Malley, G.B. Thompson, Metall. Mater. Trans. A 47 (2016) 1984–1995.CrossRefGoogle Scholar
  14. [14]
    K. Miyata, T. Kushida, T. Omura, Y. Komizo, Metall. Mater. Trans. A 34 (2003) 1565–1573.CrossRefGoogle Scholar
  15. [15]
    C.Y. Chen, C.C. Chen, J.R. Yang, Mater. Charact. 88 (2014) 69–79.CrossRefGoogle Scholar
  16. [16]
    X. Li, Z. Wang, X. Deng, G. Wang, R.D.K. Misra, Metall. Mater. Trans. A 47 (2016) 1929–1938.CrossRefGoogle Scholar
  17. [17]
    S. Shanmugam, M. Tanniru, R.D.K. Misra, D. Panda, S. Jansto, Mater. Sci. Technol. 21 (2013) 883–892.CrossRefGoogle Scholar
  18. [18]
    J.G. Jung, J.S. Park, J. Kim, Y.K. Lee, Mater. Sci. Eng. A 528 (2011) 5529–5535.CrossRefGoogle Scholar
  19. [19]
    W.J. Liu, J.J. Jonas, Metall. Mater. Trans. A 20 (1989) 689–697.CrossRefGoogle Scholar
  20. [20]
    N. Fujita, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 17 (2001) 403–408.CrossRefGoogle Scholar
  21. [21]
    F. Perrard, A. Deschamps, P. Maugis, Acta Mater. 55 (2007) 1255–1266.CrossRefGoogle Scholar
  22. [22]
    C. Hin, Y. Bréchet, P. Maugis, F. Soisson, Acta Mater. 56 (2008) 5535–5543.CrossRefGoogle Scholar
  23. [23]
    P. Maugis, M. Gouné, Acta Mater. 53 (2005) 3359–3367.CrossRefGoogle Scholar
  24. [24]
    B. Dutta, E.J. Palmiere, C.M. Sellars, Acta Mater. 49 (2001) 785–794.CrossRefGoogle Scholar
  25. [25]
    Q.L. Yong, Secondary phase in steels, Metallurgical Industry Press, Beijing, 2006.Google Scholar
  26. [26]
    M. Perez, M. Dumont, D. Acevedo-Reyes, Acta Mater. 56 (2008) 2119–2132.CrossRefGoogle Scholar
  27. [27]
    S. Okaguchi, T. Hashimoto, ISIJ Int. 32 (1992) 283–290.CrossRefGoogle Scholar
  28. [28]
    J.D. Robson, Acta Mater. 52 (2004) 4669–4676.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Rolling and AutomationNortheastern UniversityShenyangChina

Personalised recommendations