Journal of Iron and Steel Research International

, Volume 25, Issue 10, pp 1078–1085 | Cite as

Effect of cooling time t8/5 on microstructure and toughness of Nb–Ti–Mo microalloyed C–Mn steel

  • Xiao-nan WangEmail author
  • Xia-ming Chen
  • Feng Wen
  • Peng-fei Guo
  • Lei Yang
  • Qian Yan
  • Hong-shuang Di
Original Paper


In order to further optimize welding process of Nb–Ti–Mo microalloyed steel, welding thermal cycles on coarse-grained heat-affected zone (CGHAZ) of welded joints were simulated using Gleeble 1500. The microstructure and low-temperature impact fracture were investigated using a scanning electron microscope and a pendulum impact machine, respectively. Moreover, the relationship between cooling time t8/5 and the microstructure of CGHAZ was discussed, and the effect of microstructure on impact toughness was also studied. As cooling time increased, martensite fraction decreased from 97.8% (3 s) to 3.0% (60 s). The fraction of martensite/austenite (M/A) constituent increased from 2.2% (3 s) to 39.0% (60 s), its shape changed from granular to strip, and the maximum length increased from 2.4 μm (3 s) to 7.0 μm (60 s). As cooling time increased, the prior austenite grain size increased from 34.0 μm (3 s) to 49.0 μm (60 s), the impact absorption energy reduced from 101.8 J (5 s) to 7.2 J (60 s), and the fracture mechanism changed from quasi-cleavage fracture to cleavage fracture. The decreased toughness of CGHAZ was due to the reduction of lath martensite-content, coarsening of original austenite grain, and increase and coarsening of M/A constituent. The heat input was controlled under 7 kJ cm−1 during actual welding for these steels.


Microalloyed C–Mn steel Cooling time Impact absorption energy M/A constituent Coarse-grained heat-affected zone Heat input 



This work was financially supported by the National Natural Science Foundation of China (No. 51775102), Open Research Fund from the State Key Laboratory of Rolling and Automation, Northeastern University (No. 2016005) and Project Funded by China Postdoctoral Science Foundation (No. 2016M601877).


  1. [1]
    C.Y. Chen, C.C. Chen, J.R. Yang, Mater. Charact. 88 (2013) 69–79.CrossRefGoogle Scholar
  2. [2]
    M.P. Phaniraj, Y.M. Shin, J. Lee, N.H. Goo, D.I. Kim, J.Y. Suh, Mater. Sci. Eng. A 633 (2015) 1–8.CrossRefGoogle Scholar
  3. [3]
    Q. Sun, H.S. Di, X.N. Wang, X.M. Chen, X.N. Qi, J.P. Li, Materials 11 (2018) 1135–1147.CrossRefGoogle Scholar
  4. [4]
    C.W. Tan, J. Yang, X.Y. Zhao, K.P. Zhang, X.G. Song, B. Chen, L.Q. Li, J.C. Feng, J. Alloy. Compd. 764 (2018) 186–201.CrossRefGoogle Scholar
  5. [5]
    L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, L.X. Du, J. Mater. Sci. 47 (2012) 4732–4742.CrossRefGoogle Scholar
  6. [6]
    A.E. Amer, Y.K. Min, K.H. Lee, H.K. Sang, S.H. Hong, J. Mater. Sci. 45 (2010) 1248–1254.CrossRefGoogle Scholar
  7. [7]
    J.M. Ni, Z.G. Li, J. Huang, Y.X. Wu, Mater. Des. 31 (2010) 4876–4880.CrossRefGoogle Scholar
  8. [8]
    H. Xie, L.X. Du, J. Hu, G.S. Sun, H.Y. Wu, R.D.K. Misra, Mater. Sci. Eng. A 639 (2015) 482–488.CrossRefGoogle Scholar
  9. [9]
    B. Hutchinson, J. Komenda, G.S. Rohrer, H. Beladi, Acta Mater. 97 (2015) 380–391.CrossRefGoogle Scholar
  10. [10]
    Z.Y. Du, Welding science foundation-material welding science foundation, Machinery Industry Press, Beijing, 2012.Google Scholar
  11. [11]
    W. Meng, Z.G. Li, X.X. Jiang, J. Huang, Y.X. Wu, S. Katayama, J. Mater. Eng. Perform. 23 (2014) 3640–3648.CrossRefGoogle Scholar
  12. [12]
    Q. Sun, H.S. Di, J.C. Li, B.Q. Wu, R.D.K. Misra, Mater. Sci. Eng. A 669 (2016) 150–158.CrossRefGoogle Scholar
  13. [13]
    F. Lu, G.P. Cheng, F. Chai, T. Pan, Z.R. Shi, S.U. Hang, J. Iron Steel Res. Int. 23 (2016) 1086–1095.CrossRefGoogle Scholar
  14. [14]
    M. Sokolov, A. Salminen, M. Kuznetsov, I. Tsibulskiy, Mater. Des. 32 (2011) 5127–5131.CrossRefGoogle Scholar
  15. [15]
    S. Kumar, S.K. Nath, V. Kumar, Mater. Des. 90 (2016) 177–184.CrossRefGoogle Scholar
  16. [16]
    S. Lee, B.S. Kim, D. Kwon, Metall. Mater. Trans. A 24 (1993) 1133–1141.CrossRefGoogle Scholar
  17. [17]
    L.Y. Lan, C.L. Qiu, H.Y. Song, D.W. Zhao, Mater. Lett. 125 (2014) 86–88.CrossRefGoogle Scholar
  18. [18]
    M. Zhang, X.N. Wang, G.J. Zhu, Acta Metall. 27 (2014) 521–529.CrossRefGoogle Scholar
  19. [19]
    F. Matsuda, K. Ikeuchi, H. Okada, I. Hrivnak, H.S. Park, Trans. JWRI 23 (1994) 231–238.Google Scholar
  20. [20]
    D.L. Shu, Metal mechanical property, Mechanical Industry Press, Beijing, 1987.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Xiao-nan Wang
    • 1
    Email author
  • Xia-ming Chen
    • 1
  • Feng Wen
    • 1
  • Peng-fei Guo
    • 1
  • Lei Yang
    • 1
  • Qian Yan
    • 1
  • Hong-shuang Di
    • 2
  1. 1.Shagang School of Iron and SteelSoochow UniversitySuzhouChina
  2. 2.State Key Laboratory of Rolling and AutomationNortheastern UniversityShenyangChina

Personalised recommendations