Advertisement

Shape memory effect of dual-phase NiMnGaTb ferromagnetic shape memory alloys

  • Jiang Zhang
  • Yong-hong Ma
  • Ruo-lin Wu
  • Jing-min WangEmail author
Original Paper
  • 96 Downloads

Abstract

The evolution of microstructure, reverse martensitic transformation and the correlated influence on shape memory effect was investigated in as-cast and directionally solidified dual-phase NiMnGaTb alloys. The directionally solidified alloys exhibit single-crystal microstructure, preferred dendrite microstructure, and mussy dendrite microstructure in the specimens grown at a withdrawal rate (v) of 10, 50 and 200, and 1000 μm/s, respectively. The precipitates dispersively distribute in the martensite matrix for the directionally solidified alloys. With the refined grains and particle precipitates, the reverse martensitic transformation gradually shifts to lower temperatures and the temperature span is significantly broadened. The directional solidification technology can effectively enhance the strains recovered due to shape memory effect (εsme) and decrease the compressive stress required to trigger the reorientation of twins (σ) via the realization of preferred orientation, while the maximal εsme and minimum σ can reach 4.96% and 14 MPa in v = 10 μm/s specimens, respectively. The formation of dendrite morphology degrades the shape memory strain, and εsme decreases with the growth of secondary dendritic arms.

Keywords

NiMnGaTb alloy Directional solidification Dual-phase microstructure Shape memory effect 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 513311001, 51520105002, 51601007, and 51601008 and the China Postdoctoral Science Foundation Funded Project under Grant Nos. 2017M610738 and 2018T110026.

References

  1. [1]
    K. Ullakko, J.K. Huang, C. Kanter, V.V. Kokorin, R.C. O’Handley, Appl. Phys. Lett. 69 (1996) 1966–1968.CrossRefGoogle Scholar
  2. [2]
    H. Hua, J.M. Wang, C.B. Jiang, H.B. Xu, Scripta Mater. 124 (2016) 142–145.CrossRefGoogle Scholar
  3. [3]
    A. Sozinov, N. Lanska, A. Soroka, W. Zou, Appl. Phys. Lett. 102 (2013) 021902.CrossRefGoogle Scholar
  4. [4]
    M. Chmielus, X.X. Zhang, C. Witherspoon, D.C. Dunand, P. Müllner, Nat. Mater. 8 (2009) 863–866.CrossRefGoogle Scholar
  5. [5]
    H. Zhang, T.L. Zhang, C.B. Jiang, Smart Mater. Struct. 21 (2012) 055014.CrossRefGoogle Scholar
  6. [6]
    T.L. Zhang, C.B. Jiang, H.B. Xu, J.Q. Mao, J. Appl. Phys. 101 (2007) 034511.CrossRefGoogle Scholar
  7. [7]
    T.L. Zhang, C.B. Jiang, X.L. Liu, H.B. Xu, Smart Mater. Struct. 14 (2005) N38–N41.CrossRefGoogle Scholar
  8. [8]
    A. Smith, C.R.H. Bahl, R. Bjørk, K. Engelbrecht, K.K. Nielsen, N. Pryds, Adv. Energy Mater. 2 (2012) 1288–1318.CrossRefGoogle Scholar
  9. [9]
    O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, J.P. Liu, Adv. Mater. 23 (2011) 821–842.CrossRefGoogle Scholar
  10. [10]
    Y.Y. Wu, J.M. Wang, J. Zhang, Intermetallics 89 (2017) 100–104.CrossRefGoogle Scholar
  11. [11]
    C. Biswas, R. Rawat, S.R. Barman, Appl. Phys. Lett. 86 (2005) 202508.CrossRefGoogle Scholar
  12. [12]
    J.M. Wang, Q. Yu, K.Y. Xu, C. Zhang, Y.Y. Wu, C.B. Jiang, Scripta Mater. 130 (2017) 148–151.CrossRefGoogle Scholar
  13. [13]
    Z. Yang, D.Y. Cong, L. Huang, Z.H. Nie, X.M. Sun, Q.H. Zhang, Y.D. Wang, Mater. Des. 92 (2016) 932–936.CrossRefGoogle Scholar
  14. [14]
    Z.J. Jiang, Y.Y. Wu, J.W. Wang, C.B. Jiang, J. Iron Steel Res. Int. 24 (2017) 711–717.CrossRefGoogle Scholar
  15. [15]
    X. Moya, E. Defay, V. Heine, N.D. Mathur, Nature Phys. 11 (2015) 202–205.CrossRefGoogle Scholar
  16. [16]
    W. Sun, J. Liu, B.F. Lu, Y. Li, A.R. Yan, Scripta Mater. 114 (2016) 1–4.CrossRefGoogle Scholar
  17. [17]
    Y.Y. Wu, J.M. Wang, C.B. Jiang, H.B. Xu, Mater. Sci. Eng. A 646 (2015) 288–293.CrossRefGoogle Scholar
  18. [18]
    K. Tsuchiya, A. Tsutsumi, H. Ohtsuka, M. Umemoto, Mater. Sci. Eng. A 378 (2004) 370–376.CrossRefGoogle Scholar
  19. [19]
    Y.Y. Wu, J.M. Wang, H. Hua, C.B. Jiang, H.B. Xu, J. Alloy. Compd. 632 (2015) 681–685.CrossRefGoogle Scholar
  20. [20]
    L. Gao, G.F. Dong, Z.Y. Gao, W. Cai, J. Alloy. Compd. 520 (2012) 281–286.CrossRefGoogle Scholar
  21. [21]
    X. Zhang, J.H. Sui, Z.L. Yu, W. Cai, J. Alloy. Compd. 509 (2011) 8032–8037.CrossRefGoogle Scholar
  22. [22]
    Y.Y. Wu, L. Fang, C.Z. Meng, Y.J. Chen, J.M. Wang, J.H. Liu, T.L. Zhang, C.B. Jiang, Mater. Res. Lett. 6 (2018) 327–332.CrossRefGoogle Scholar
  23. [23]
    L. Gao, J.H. Sui, W. Cai, Z.Y. Gao, Solid State Commun. 149 (2009) 257–260.CrossRefGoogle Scholar
  24. [24]
    L. Gao, Z.Y. Gao, W. Cai, L.C. Zhao, Mater. Sci. Eng. A 438–440 (2006) 1077–1080.CrossRefGoogle Scholar
  25. [25]
    J.H. Sui, X. Zhang, X.H. Zheng, Z.Y. Yang, W. Cai, X.H. Tian, Scripta Mater. 68 (2013) 679–682.CrossRefGoogle Scholar
  26. [26]
    C.Z. Meng, Y.Y. Wu, C.B. Jiang, Mater. Des. 130 (2017) 183–189.CrossRefGoogle Scholar
  27. [27]
    X. Zhang, J.H. Sui, X.H. Zheng, Z.Y. Yang, W. Cai, Mater. Sci. Eng. A 597 (2014) 178–182.CrossRefGoogle Scholar
  28. [28]
    D.A. Joshia, C.V. Tomy, R. Nagarajan, S.K. Malik, J. Magn. Magn. Mater. 313 (2007) 151–156.CrossRefGoogle Scholar
  29. [29]
    Y.Y. Wu, J.M. Wang, Y.K. He, H.C. Wu, C.B. Jiang, H.B. Xu, Acta Mater. 104 (2016) 91–100.CrossRefGoogle Scholar
  30. [30]
    Y.Y. Wu, J.M. Wang, C.B. Jiang, H.B. Xu, Intermetallics 97 (2018) 42–51.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Jiang Zhang
    • 1
    • 2
  • Yong-hong Ma
    • 1
  • Ruo-lin Wu
    • 2
    • 3
  • Jing-min Wang
    • 2
    Email author
  1. 1.Institute of Higher EducationBeihang UniversityBeijingChina
  2. 2.School of Materials Science and EngineeringBeihang UniversityBeijingChina
  3. 3.Central Iron & Steel Research InstituteBeijingChina

Personalised recommendations