Advertisement

Real-time observation of bainite formation at heterogeneous phases in a high-strength weathering steel

  • Jian Cheng
  • Jia-sheng Qing
  • Yue-hua Guo
  • Hou-fa ShenEmail author
Original Paper
  • 48 Downloads

Abstract

Due to the excellent comprehensive mechanical properties and toughness of bainite steels, bainite is regarded as a most desirable microstructure for the new generation of high-strength weathering steels. The formation of bainite was observed in real time in a high-strength weathering steel, and the results showed that bainite laths show impingement during phase transformation. The preferred regions of nucleation sites were identified, and the growth rate of bainite was measured. The growth mechanism of bainite was demonstrated to exhibit growth rate contributions from both the diffusion mechanism and the shear mechanism. Subsequently, the heterogeneous phases that form preferred sites for bainite nucleation were quantitatively identified by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), and calculation of phase diagram (CALPHAD). The austenite grain sizes increase with increasing austenite temperature, which leads to longer bainite laths. The influence of a small lattice disregistry between the heterogeneous phases and bainite on the bainite nucleation was studied. The disregistries between the favorable heterogeneous phases of VN, VC, TiN, or TiC and the α-Fe in bainite are 2.9, 3.1, 3.9, and 4.6%, respectively. Therefore, VN, VC, TiN, and TiC can act as highly effective nuclei for bainite during the bainite transformation.

Keywords

Bainite Real-time observation Plasticity Phase transformation Weathering steel 

Notes

Acknowledgements

This work was financially supported by the project of green manufacturing system integration of MIIT China (2016-64).

References

  1. [1]
    J. Guo, C.J. Shang, S.W. Yang, Y. Wang, L.W. Wang, X.L. He, J. Iron Steel Res. Int. 16 (2009) No. 6, 63–69.CrossRefGoogle Scholar
  2. [2]
    Q.Yu, C.F. Dong, Y.H. Fang, K. Xiao, C.Y. Guo, G. He, X.G. Li, J. Iron Steel Res. Int. 23 (2016) 1061–1070.CrossRefGoogle Scholar
  3. [3]
    M. Morcillo, I. Diaz, B. Chico, H. Cano, D.D.L. Fuente, Corros. Sci. 83 (2014) 6–31.CrossRefGoogle Scholar
  4. [4]
    J.S. Wang, P.Y. Shi, C.J. Liu, M.F. Jiang, J. Iron Steel Res. Int. 22 (2015) 1020–1023.CrossRefGoogle Scholar
  5. [5]
    E.S. Davenport, E.C. Bain, Metall. Mater. Trans. B 1 (1970) 3503–3530.CrossRefGoogle Scholar
  6. [6]
    C. Garcia-Mateo, F.G. Caballero, H.K.D.H. Bhadeshia, ISIJ Int. 43 (2003) 1238–1243.CrossRefGoogle Scholar
  7. [7]
    X.Y. Long, F.C. Zhang, J. Kang, B. Lv, X.B. Shi, Mater. Sci. Eng. A 594 (2014) 344–351.CrossRefGoogle Scholar
  8. [8]
    N. Saeidi, A. Ekrami, Mater. Sci. Eng. A 527 (2010) 5575–5581.CrossRefGoogle Scholar
  9. [9]
    F.B. Pickering, Physical metallurgy and the design of steels, Applied Science Publishers, London, 1978.Google Scholar
  10. [10]
    Q.L. Yong, Microalloyed steel-physical and mechanical metallurgy, China Machine Press, Beijing, 1989.Google Scholar
  11. [11]
    R. Lagneborg, T. Siwecki, S. Zajac, B. Hutchinson, Scand. J. Metall. 28 (1999) 186–241.Google Scholar
  12. [12]
    R. Bakhtiari, A. Ekrami, Mater. Sci. Eng. A 525 (2009) 159–165.CrossRefGoogle Scholar
  13. [13]
    T. Pan, X.Y. Chai, J.G. Wang, S.U. Huang, C.F. Yang, J. Iron Steel Res. Int. 22 (2015) 1037–1042.CrossRefGoogle Scholar
  14. [14]
    H.I. Aaronson, J. M. Rigsbee, B.C. Muddle, J.F. Nie, Scripta Mater. 47 (2002) 207–212.CrossRefGoogle Scholar
  15. [15]
    H.I. Aaronson, T. Furuhara, M.G. Hall, J.P. Hirth, J.F. Nie, G.R. Purdy, W.T. Reynold Jr., Acta Mater. 54 (2006) 1227–1232.CrossRefGoogle Scholar
  16. [16]
    D. Quidort, Y. Bréchet, Scripta Mater. 47 (2002) 151–156.CrossRefGoogle Scholar
  17. [17]
    T.S. Wang, J. Yang, C.J. Shang, X.Y. Li, B. Zhang, F.C. Zhang, Scripta Mater. 61 (2009) 434–437.CrossRefGoogle Scholar
  18. [18]
    F.G. Caballero, M.K. Miller, S.S. Babu, C. Garcia-Mateo, Acta Mater. 55 (2007) 381–390.CrossRefGoogle Scholar
  19. [19]
    M.K. Kang, M.X. Zhang, M. Zhu, Acta Mater. 54 (2006) 2121–2129.CrossRefGoogle Scholar
  20. [20]
    P. Kolmskog, A. Borgenstam, M. Hillert, P. Hedström, S.S. Babu, Metall. Mater. Trans. A 43 (2012) 4984–4988.CrossRefGoogle Scholar
  21. [21]
    H.S. Fang, J.B. Yang, Z.G. Yang, B.Z. Bai, Scripta Mater. 47 (2002) 157–162.CrossRefGoogle Scholar
  22. [22]
    H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 273 (1999) 58–66.CrossRefGoogle Scholar
  23. [23]
    Y. Komizo, H. Terasaki, M. Yonemura, Weld World. 52 (2008) 56–63.CrossRefGoogle Scholar
  24. [24]
    D. Turnbull, B. Vonnegut, Ind. Eng. Chem. 44 (1952) 1292–1298.CrossRefGoogle Scholar
  25. [25]
    G. Miyamoto, T. Shinyoshi, J. Yamaguchi, T. Furuhara, T. Maki, R. Uemori, Scripta Mater. 48 (2003) 371–377.CrossRefGoogle Scholar
  26. [26]
    S.S. Babu, J.W. Elmer, T.A. Palmer, Mater. Sci. Eng. A 374 (2004) 307–321.CrossRefGoogle Scholar
  27. [27]
    Z. Zhang, R.A. Farrar, Sci. Technol. 12 (1996) 237–260.Google Scholar
  28. [28]
    B.L. Bramfitt, Metall. Trans. B 1 (1970) 1987–1995.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Jian Cheng
    • 1
  • Jia-sheng Qing
    • 1
  • Yue-hua Guo
    • 2
  • Hou-fa Shen
    • 1
    Email author
  1. 1.Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  2. 2.Pangang Group Research Institute Co., Ltd., State Key Laboratory of Vanadium and Titanium Comprehensive UtilizationPanzhihuaChina

Personalised recommendations