Phase modulation of bcc-structured Fe35Mn25Al15Cr10Ni15 high-entropy alloy by interstitial carbon

  • Cong-hui Hu
  • Jian-lei Zhang
  • Yun-hu Zhang
  • Ke Han
  • Chun-ming Li
  • Chang-jiang SongEmail author
  • Qi-jie Zhai
Original Paper


High-entropy alloys (HEAs) usually contain more than five alloying elements. The ductility of a body-centered cubic (bcc)-type HEA typically is lower than that of their face-centered cubic (fcc) counterpart. And low ductility restricts engineering applications of the bcc-structured HEAs. In engineering materials, improvement in ductility usually results in deduction of mechanical strength. A method to improve both mechanical strength and ductility in a bcc-structured HEA was proposed by adding interstitial carbon. Experimental results showed that replacement of 5 at.% Cr with 5 at.% C in a bcc-structured Fe35Mn25Al15Cr10Ni15 HEA resulted in an increase in fcc phase from 0.3 to 93.7 vol.%. Strength and ductility increased at the same time. The transition of bcc-structure to fcc-structure along with a remaining small amount of bcc phase improved mechanical properties. This work indicates that interstitial carbon can be employed to modulate the fraction of constituent phases in a bcc-structured HEA to enhance engineering mechanical properties.


High-entropy alloy Interstitial carbon Constituent phase Phase modulation Mechanical property 



This work was financially supported by the Joint Fund of Iron and Steel Research (No.U1660103) and National Natural Science Foundation of China (No. 51574162). XRD, SEM and EBSD tests were conducted in the Instrumental Analysis & Research Center at Shanghai University. The authors would like to express sincere thanks to the staff support at the Center. We thank Dr. Tyler for editing. Part of the work was undertaken in the US National High Magnetic Field Laboratory, which is supported by NSF DMR-1157490, the State of Florida, and DOE.


  1. [1]
    C.Y. Hsu, W.R. Wang, W.Y. Tang, S.K. Chen, J.W. Yeh, Adv. Eng. Mater. 12 (2010) 44–49.CrossRefGoogle Scholar
  2. [2]
    M.R. Chen, S.J. Lin, J.W. Yeh, M.H. Chuang, S.K. Chen, Y.S. Huang, Metall. Mater. Trans. A 37 (2006) 1363–1369.CrossRefGoogle Scholar
  3. [3]
    Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1–93.CrossRefGoogle Scholar
  4. [4]
    Y.L. Chou, Y.C. Wang, J.W. Yeh, H.C. Shih, Corros. Sci. 52 (2010) 3481–3491.CrossRefGoogle Scholar
  5. [5]
    C.P. Lee, C.C. Chang, Y.Y. Chen, J.W. Yeh, H.C. Shih, Corros. Sci. 50 (2008) 2053–2060.CrossRefGoogle Scholar
  6. [6]
    Y.F. Kao, T.D. Lee, S.K. Chen, Y.S. Chang, Corros. Sci. 52 (2010) 1026–1034.CrossRefGoogle Scholar
  7. [7]
    Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, Sci. Rep. 4 (2014) 6200.CrossRefGoogle Scholar
  8. [8]
    Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Acta Mater. 124 (2017) 143–150.CrossRefGoogle Scholar
  9. [9]
    M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2 (2014) 107–123.CrossRefGoogle Scholar
  10. [10]
    Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today 19 (2016) 349–362.CrossRefGoogle Scholar
  11. [11]
    D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2016) 448–511.CrossRefGoogle Scholar
  12. [12]
    Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. 10 (2010) 534–538.CrossRefGoogle Scholar
  13. [13]
    X. Yang, Y. Zhang, Mater. Chem. Phys. 132 (2012) 233–238.Google Scholar
  14. [14]
    A.K. Singh, A. Subramaniam, J. Alloy. Compd. 587 (2014) 113–119.CrossRefGoogle Scholar
  15. [15]
    F. Otto, Y. Yang, H. Bei, E.P. George, Acta Mater. 61 (2013) 2628–2638.CrossRefGoogle Scholar
  16. [16]
    Y. Zou, H. Ma, R. Spolenak, Nat. Commun. 6 (2015) 7748.CrossRefGoogle Scholar
  17. [17]
    S. Sheikh, S. Shafeie, Q. Hu, J. Ahlström, C. Persson, J. Veselý, J. Zýka, U. Klement, S. Guo, J. Appl. Phys. 120 (2016) 3445.CrossRefGoogle Scholar
  18. [18]
    R. Stevenson, Metall. Trans. A 11 (1980) 1909–1913.CrossRefGoogle Scholar
  19. [19]
    K. Sekido, T. Ohmura, L. Zhang, T. Hara, K. Tsuzaki, Mater. Sci. Eng. A 530 (2011) 396–401.CrossRefGoogle Scholar
  20. [20]
    Z. Wang, I. Baker, Z. Cai, S. Chen, J.D. Poplawsky, W. Guo, Acta Mater. 120 (2016) 228–239.CrossRefGoogle Scholar
  21. [21]
    N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, R.R. Chen, Y.Q. Su, J.J. Guo, H.Z. Fu, Intermetallics 69 (2016) 74–77.CrossRefGoogle Scholar
  22. [22]
    C.J. Tong, Y.L. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, C.H. Tsau, S.Y. Chang, Metall. Mater. Trans. A 36 (2005) 881–893.CrossRefGoogle Scholar
  23. [23]
    Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Mater. Sci. Eng. A 454 (2007) 260–265.CrossRefGoogle Scholar
  24. [24]
    W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Intermetallics 26 (2012) 44–51.CrossRefGoogle Scholar
  25. [25]
    L. Liu, C. Li, Y. Yang, Z. Luo, C. Song, Q. Zhai, Mater. Sci. Eng. A 679 (2017) 282–291.CrossRefGoogle Scholar
  26. [26]
    K. Han, Y. Xin, R. Walsh, I.I.S. Downey, P.N. Kalu, Mater. Sci. Eng. A 516 (2009) 169–179.CrossRefGoogle Scholar
  27. [27]
    I.I.S. Downey, P.N. Kalu, K. Han, Mater. Sci. Eng. A 480 (2008) 96–100.CrossRefGoogle Scholar
  28. [28]
    A. Takeuchi, A. Inoue, Mater. Trans. 46 (2005) 2817–2829.CrossRefGoogle Scholar
  29. [29]
    Z. Wang, I. Baker, Mater. Lett. 180 (2016) 153–156.CrossRefGoogle Scholar
  30. [30]
    S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. 109 (2011) 103505.CrossRefGoogle Scholar
  31. [31]
    C.T. Liu, Metall. Rev. 29 (1984) 168–194.CrossRefGoogle Scholar
  32. [32]
    T.B. Massalski, Materia Japan 49 (2010) 583–596.CrossRefGoogle Scholar
  33. [33]
    C. Li, B. Wang, Y. Zhang, C. Song, Q. Zhai, The 2nd International Conference on Advances in Energy Environment and Chemical Engineering, Singapore, 2016, pp. 10–16.Google Scholar
  34. [34]
    F. Meng, J. Qiu, I. Baker, Mater. Sci. Eng. A 586 (2013) 45–52.CrossRefGoogle Scholar
  35. [35]
    K.C. Hsieh, C.F. Yu, W.T. Hsieh, W.R. Chiang, S.K. Jin, J.H. Lai, C.P. Tu, C.C. Yang, J. Alloy. Compd. 483 (2009) 209–212.CrossRefGoogle Scholar
  36. [36]
    M.H. Tsai, K.Y. Tsai, C.W. Tsai, L. Chi, C.C. Juan, J.W. Yeh, Mater. Res. Lett. 1 (2013) 207–212.CrossRefGoogle Scholar
  37. [37]
    F. Meng, I. Baker, J. Alloy. Compd. 645 (2015) 376–381.CrossRefGoogle Scholar
  38. [38]
    D.G. Shaysultanov, G.A. Salishchev, Y.V. Ivanisenko, S.V. Zherebtsov, M.A. Tikhonovsky, N.D. Stepanov, J. Alloy. Compd. 705 (2017) 756–763.CrossRefGoogle Scholar
  39. [39]
    C.H. Tsau, P.Y. Lee, Entropy 18 (2016) 288.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Cong-hui Hu
    • 1
  • Jian-lei Zhang
    • 1
  • Yun-hu Zhang
    • 1
  • Ke Han
    • 2
  • Chun-ming Li
    • 1
  • Chang-jiang Song
    • 1
    Email author
  • Qi-jie Zhai
    • 1
  1. 1.State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy and School of Materials Science and EngineeringShanghai UniversityShanghaiChina
  2. 2.National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeUSA

Personalised recommendations