Advertisement

Application of tellurium in free-cutting steels

  • Ping Shen
  • Qian-kun Yang
  • Dong Zhang
  • Yan-xin Wu
  • Jian-xun Fu
Original Paper
  • 1 Downloads

Abstract

Te is widely used in iron and steel industry. After adding a certain amount of Te in the steel, many physical and chemical properties can be improved. As a free-cutting element, a small amount of Te can significantly improve the machinability of steel. The existing form of Te in the steel, the modification law of MnS inclusion by Te and the influence rule and mechanism of Te on the machinability of steel are summarized and expounded in detail, providing a reference for further study and development of Te-containing free-cutting steels.

Keywords

Tellurium Inclusion Sulfide modification Free-cutting steel 

Notes

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2018YFB0704400), the National Natural Science Foundation of China (Nos. 51474142 and 51671124) and the China Postdoctoral Science Foundation (No. 2018M632082).

References

  1. [1]
    X. Zhai, Y. Zhou, Scattered metals, University of Science and Technology of China Press, Hefei, 2009.Google Scholar
  2. [2]
    S. Wang, JOM 63 (2011) 90–93.CrossRefGoogle Scholar
  3. [3]
    Y. Ma, Study of prepared tellurium film with spectral selectivity and new process to recover of tellurium from lead-rich tellurium slag, Central South University, Changsha, 2006.Google Scholar
  4. [4]
    Z. Sun, Study on recovery and purification of tellurium from copper anode slime and relative fundamental theory, Central South University, Changsha, 2012.Google Scholar
  5. [5]
    Y. Dai, New type of Te-Ni-Cr alloy of the high-temperature oxidation resistance, Lanzhou University of Technology, Lanzhou, 2011.Google Scholar
  6. [6]
    Y. Hao, P. Zhu, Z. Li, J. Gansu Univ. Technol. 17 (1991) No. 3, 53–57.Google Scholar
  7. [7]
    I.V. Popova, A.G. Nasibov, G.G. Gulei, G.A. Sveshnikova, Met. Sci. Heat Treat. 28 (1986) 52–55.CrossRefGoogle Scholar
  8. [8]
    S. Ueda, S. Suzuki, T. Yoshikawa, K. Morita, ISIJ Int. 57 (2017) 397–403.CrossRefGoogle Scholar
  9. [9]
    Z.A. Lv, H.W. Ni, H. Zhang, C.S. Liu, J. Iron Steel Res. Int. 24 (2017) 654–660.CrossRefGoogle Scholar
  10. [10]
    A. Mahmutoviü, M. Rimac, J. Trands Dev. Mach. Assoc. Technol. 19 (2015) 53–56.Google Scholar
  11. [11]
    H. Yaguchi, N. Onodera, Trans. Inst. Iron Steel Inst. Jpn. 28 (1988) 1051–1059.CrossRefGoogle Scholar
  12. [12]
    S. Liu, Non-ferrous Met. Rare. Earth 1 (1995) 16–21.Google Scholar
  13. [13]
    N.E. Luiz, Á.R. Machado, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 222 (2008) 347–360.Google Scholar
  14. [14]
    S. Abeyama, S. Nakamura, Jpn. Inst. Met. 21 (2011) 363–365.CrossRefGoogle Scholar
  15. [15]
    A. Kimura, K. Nishikiori, Denki Seiko (Electr. Furn. Steel) 59 (1989) 59–64.CrossRefGoogle Scholar
  16. [16]
    J. Xu, X. Zhang, Y. Yin, China Writ. Instrum. 2 (2014) 27–44.Google Scholar
  17. [17]
    D. Bhattacharya, D.T. Quinto, Metall Trans. A 11 (1980) 919–934.CrossRefGoogle Scholar
  18. [18]
    Y. Liu, J. Dong, Auto. Technol. Mater. 6 (2009) 50–54.Google Scholar
  19. [19]
    P. Reynolds, V. Block, I. Essel, F. Klocke, Steel Res. Int. 78 (2007) 908–914.CrossRefGoogle Scholar
  20. [20]
    W.D. Cobb, W.W. Foster, T.S. Harrison, Analyst 101 (1976) 39–43.CrossRefGoogle Scholar
  21. [21]
    J. Ding, Heat Treat. Techno. Equip. 4 (1986) 8–12.Google Scholar
  22. [22]
    T. Katoh, S. Abeyama, A. Kimura, S. Nakamura, Denki Seiko (Electr. Furn. Steel) 53 (1982) 195–202.CrossRefGoogle Scholar
  23. [23]
    P. Zhu, G. Zhang, H. Ren, Y. Hao, J. Gansu Univ. Technol. 12 (1986) No. 4, 51–57.Google Scholar
  24. [24]
    T.B. Smith, D.B. Clayton, Nature 198 (1963) 380–381.CrossRefGoogle Scholar
  25. [25]
    D. Li, S. Gao, L. Zhang, Z. Wang, X. Dong, Iron and Steel 22 (1987) No. 4, 38–44.Google Scholar
  26. [26]
    G. Gupta, D.G.C. Robertson, M.E. Schlesinger, Can. Metall. Quart. 44 (2013) 351–356.CrossRefGoogle Scholar
  27. [27]
    J.A. Dean, Lange’s handbook of chemistry, 13th ed., Science Press, Beijing, 2003.Google Scholar
  28. [28]
    I. Barin, F. Sauert, E. Schultze-rhonhof, S.S. Wang, Thermochemical data of pure substances. Science Press, Beijing, 2003.Google Scholar
  29. [29]
    J.D. Watson, Microscopy and the development of free-machining steels. Springer US, New York, 1986.CrossRefGoogle Scholar
  30. [30]
    M.E. Schlesinger, J. Phase Equilib. 19 (1998) 591–596.CrossRefGoogle Scholar
  31. [31]
    H. Yaguchi, Metall. Trans. A 24 (1993) 504–508.CrossRefGoogle Scholar
  32. [32]
    T.Y. Tien, L.H. Van Vlack, R.J. Martin, Umr (1967) 1–6.Google Scholar
  33. [33]
    G. Yan, Study of technology theory and quality control for free-cutting machinability of medium-carbon-steel, University of Science and Technology Beijing, Beijing, 2006.Google Scholar
  34. [34]
    X. Zhou, Study on the morphology control of sulfide inclusion in free-cutting steel 30MnVS, Southeast University, Nanjing, 2009.Google Scholar
  35. [35]
    F. Duan, R. Zhu, T. Lin, J. Iron Steel Res. 24 (2012) No. 1, 36–39.Google Scholar
  36. [36]
    E. Costa, N. Luiz, M.D. Silva, A. Machado, E. Ezugwu, Ind. Lubr. Tribol. 63 (2011) 420–426.CrossRefGoogle Scholar
  37. [37]
    G. Luo, H. Wang, Shanghai Met. 37 (2015) No. 6, 10–14.Google Scholar
  38. [38]
    Y. Wang, F. Wang, Numerical study on cutting performance of free cutting stainless steel used in ball pen, Xi’an University of Architecture and Technology, Xi’an, 2016.Google Scholar
  39. [39]
    P. Gao, K. Chen, Q. Dai, A. Meng, T. Dai, Mater. Mech. Eng. 34 (2010) No. 9, 41–45.Google Scholar
  40. [40]
    A. Mahmutoviü, M. Rimac, J. Trands Dev. Mach. Assoc. Technol. 19 (2015) 53–56.Google Scholar
  41. [41]
    L. Zheng, A. Malfliet, P. Wollants, B. Blanpain, M. Guo, Metall. Mater. Trans. B 48 (2017) 1–12.CrossRefGoogle Scholar
  42. [42]
    S. Abeyama, A. Kimura, S. Nakamura, J. Appl. Metelwork. 2 (1983) 243–248.CrossRefGoogle Scholar
  43. [43]
    S. Liu, China Nonferrous Metall 3 (1983) 65–66.Google Scholar
  44. [44]
    I. Essel, Machinability enhancement of non-leaded free cutting steels, Shaker Verlag GmbH, Germany, 2006.Google Scholar
  45. [45]
    J. Nomani, A. Pramanik, T. Hilditch, G. Littlefair, Int. J. Adv. Manuf. Technol. 80 (2015) 1127–1135.CrossRefGoogle Scholar
  46. [46]
    S. Engineer, B. Huchtemann, V. Schueler, Technische Berichte Thyssen Edelstahl 14 (1988) 143–148.Google Scholar
  47. [47]
    S. Katayama, M. Hashimura, ISIJ Int. 30 (2007) 457–463.CrossRefGoogle Scholar
  48. [48]
    T. Fujiwara, T. Katoh, S. Abeyama, S. Nakamura, Denki Seiko (Electr. Furn. Steel) 49 (1978) 168–176.CrossRefGoogle Scholar
  49. [49]
    R.S. Qi, M. Jin, X.G. Liu, B.F. Guo, J. Iron Steel Res. Int. 23 (2016) 531–538.CrossRefGoogle Scholar
  50. [50]
    K. Ogino, K. Nogi, O. Yamase, Tetsu-to-Hagane 66 (2009) 179–185.CrossRefGoogle Scholar
  51. [51]
    K. Ogino, K. Nogi, O. Yamase, ISIJ Int. 23 (1983) 234–239.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrous Metallurgy, School of Materials Science and EngineeringShanghai UniversityShanghaiChina
  2. 2.Institute of Material Science and EngineeringNational Taiwan UniversityTaipeiChina

Personalised recommendations