Long-term thermal-aging stability of oxide-dispersion-strengthened ferritic steels at 753 K

  • Shuai Xu
  • Zhang-jian ZhouEmail author
  • Shao-fu Li
  • Hao-dong Jia
Original Paper


Oxide-dispersion-strengthened (ODS) ferritic steels are promising candidates for structural applications in the future nuclear reactors. The higher chromium contents of ODS ferritic steels, the better the corrosion resistance, which can meet the harsh corrosion environment of the advanced reactors. However, increasing the Cr content may also lead to the brittleness of the ODS steels when serving at high temperatures. The ODS ferritic steels with different Cr contents (12, 16 and 18 wt% Cr, respectively) were fabricated by mechanical alloying, hot isostatic pressing and forging. Mechanical properties and microstructure evolution of the ODS ferritic steels after aging at 753 K for 2000 h were investigated. It is found that both Vickers hardness and yield strength of 18%Cr ODS ferritic steel were strongly increased and the impact energy was decreased after aging at 753 K. In order to explore the reasons for changes in the mechanical properties, the fracture surfaces were characterized by scanning electron microscopy, and microstructures after aging were observed by transmission electron microscopy. The impact fracture of 18%Cr ODS ferritic steel belongs to quasi-cleavage facture, which is consistent with its very low impact energy. The grain size and dispersed oxide particles of different ODS steels are very stable. M23C6 carbide and M2C carbide were found in 12%Cr ODS steel and 16%Cr ODS steels, respectively.


Oxide-dispersion-strengthened ferritic steel Aging stability Mechanical property Microstructure 



The authors would like to express their thanks for the financial support of National Magnetic Confinement Fusion Program of China under Grant No. 2015GB121006.


  1. [1]
    T.K. Kim, S. Noh, S.H. Kang, J.P. Jin, H.J. Jin, M.K. Lee, J. Jang, C.K. Rhee, J. Nucl. Eng. Technol. 48 (2016) 572-594.CrossRefGoogle Scholar
  2. [2]
    S. Ukai, M. Fujiwara, J. Nucl. Mater. 307 (2002) 749-757.CrossRefGoogle Scholar
  3. [3]
    R.L. Klueh, P.J. Maziasz, I.S. Kim, L. Heatherly, D.T. Hoelzer, N. Hashimoto, E.A. Kenik, K. Miyahara, J. Nucl. Mater. 307 (2002) 773-777.CrossRefGoogle Scholar
  4. [4]
    J.S. Lee, C.H. Jang, I.S. Kim, A. Kimura, J. Nucl. Mater. 367 (2007) 229-233.CrossRefGoogle Scholar
  5. [5]
    R.L. Klueh, D.R. Harries, High-chromium ferritic and martensitic steels for nuclear applications, 3rd edition, ASTM International, 2001.Google Scholar
  6. [6]
    C. Capdevila, M.K. Miller, K.F. Russell, J. Chao, J.L. González-Carrasco, Mater. Sci. Eng. A 490 (2008) 277-288.CrossRefGoogle Scholar
  7. [7]
    O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim, D.N. Seidman, Microsc. Microanal. 6 (2000) 437-444.Google Scholar
  8. [8]
    C. Capdevila, M.M. Aranda, R. Rementeria, J. Chao, E. Urones-Garrote, J. Aldazabal, M.K. Miller, Acta Mater. 107 (2016) 27-37.CrossRefGoogle Scholar
  9. [9]
    S. Kobayashi, T. Takasugi, Scripta Mater. 63 (2010) 1104-1107.CrossRefGoogle Scholar
  10. [10]
    A.L. Rouffié, J. Crépin, M. Sennour, B. Tanguy, A. Pineau, D. Hamon, P. Wident, S. Vincent, V. Garat, B. Fournier, J. Nucl. Mater. 445 (2014) 37-42.CrossRefGoogle Scholar
  11. [11]
    C. Capdevila, M.K. Miller, I. Toda, J. Chao, Mater. Sci. Eng. A 527 (2010) 7931-7938.CrossRefGoogle Scholar
  12. [12]
    L.M. Tan, Y.W. Zhang, J. Jia, S.B. Han, J. Iron Steel Res. Int. 28 (2016) 851-856.CrossRefGoogle Scholar
  13. [13]
    S.F. Li, Z.J. Zhou, P.H. Wang, H.Y. Sun, M. Wang, G.M. Zhang, Mater. Des. 90 (2016) 318-329.CrossRefGoogle Scholar
  14. [14]
    M.A. Meyers, K.K. Chawla, Mechanical behavior of materials, Cambridge University Press, New York, 2000.zbMATHGoogle Scholar
  15. [15]
    S.F. Li, Z.J. Zhou, J.S. Jang, M. Wang, H.L. Hu, H.Y. Sun, L. Zou, G.M. Zhang, L.W. Zhang, J. Nucl. Mater. 445 (2014) 194-200.CrossRefGoogle Scholar
  16. [16]
    D. Hull, Fractography observing, measuring, and interpreting fracture surface topography, Cambridge University Press, Cambridge, 1999.Google Scholar
  17. [17]
    G.M. Zhang, Z.J. Zhou, K. Mo, P.H. Wang, Y.B. Miao, S.F. Li, M. Wang, X. Liu, M.Q. Gong, J. Almer, J. Alloy. Compd. 648 (2015) 223-228.CrossRefGoogle Scholar
  18. [18]
    H.T. Zhang, Y.N. Huang, H.P. Ning, C.A. Williams, A.J. London, K. Dawson, Z.L. Hong, M.J. Gorley, C.R.M. Grovenor, G.J. Tatlock, S.G. Roberts, M.J. Reece, H.X. Yan, P.S. Grant, J. Nucl. Mater. 464 (2015) 61-68.CrossRefGoogle Scholar
  19. [19]
    Z. Oksiuta, M. Lewandowska, K.J. Kurzydłowski, J. Mech. Mater. 67 (2013) 15-24.CrossRefGoogle Scholar
  20. [20]
    A. Steckmeyer, M. Praud, B. Fournier, J. Malaplate, J. Garnier, J.L. Béchade, I. Tournié, A. Tancray, A. Bougault, P. Bonnaillie, J. Nucl. Mater. 405 (2010) 95-100.CrossRefGoogle Scholar
  21. [21]
    S.F. Li, Z.J. Zhou, M. Li, M. Wang, G.M. Zhang, J. Alloy. Compd. 648 (2015) 39-45.CrossRefGoogle Scholar
  22. [22]
    A. Chauhan, D. Litvinov, Y. de Carlan, J. Aktaa, Mater. Sci. Eng. A 658 (2016) 123-134.CrossRefGoogle Scholar
  23. [23]
    X. Yang, B. Liao, F.R. Xiao, W. Yan, Y.Y. Shan, K. Yang, J. Iron Steel Res. Int. 24 (2017) 858-864.CrossRefGoogle Scholar
  24. [24]
    J.H. Kim, T.S. Byun, D.T. Hoelzer, C.H. Park, J.T. Yeom, J.K. Hong, Mater. Sci. Eng. A 559 (2013) 111-118.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Shuai Xu
    • 1
  • Zhang-jian Zhou
    • 1
    Email author
  • Shao-fu Li
    • 1
  • Hao-dong Jia
    • 1
  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations