Advertisement

Effect of strain rate and temperature on the serration behavior of SA508-III RPV steel in the dynamic strain aging process

  • Xue Bai
  • Su-jun Wu
  • Li-jun Wei
  • Shuai Luo
  • Xie Xie
  • Peter K. Liaw
Original Paper
  • 10 Downloads

Abstract

Dynamic strain aging (DSA) effect on SA508-III reactor pressure vessel (RPV) steel was investigated. The SA508-III RPV steel was subjected to tension tests at different strain rates (1.1 × 10−5 s−1 and 6.6 × 10−5 s−1) and different temperatures (500 and 550 °C) to evaluate the influence of strain rate and temperature on the serrated flow behavior, which is the repetitive and discontinuous yielding phenomenon on the stress–strain curves. The higher temperature leads to the higher density of precipitates, M23C6 carbides and needle-like Mo2C carbides. It was found that the samples under tension test of 6.6 × 10−5 s−1 and 500 °C possess superior mechanical properties and mainly show A-type serrations on the tension test curves. Then, the local regress method was used to filter the DSA curves, thus to show the real trend of the curves. It has been found that the less time of interaction between dislocations and precipitates under higher strain rates leads to a higher strength of the sample. The more tiny-stress drops on the 550 °C serration curve can be attributed to the hardening phase, M23C6 carbides and needle-like Mo2C carbides. The higher percentage of the small stress drops on the serration curves represents the higher mechanical strength.

Keywords

Reactor pressure vessel steel SA508-III steel Dynamic strain aging Serration behavior 

Notes

Acknowledgements

This work is financially supported by the National Science and Technology Key Specific Project: Life Management Technology of Nuclear Power Plant of China (Grant No. 2011ZX06004-002). The authors would like to express thanks for the help with the manufacturing of the SA508-III reactor pressure vessel steel by Shougang Technology Research Institute.

References

  1. [1]
    P. Bowen, S.G. Druce, J.F. Knott, Acta Metall. 34 (1986) 1121–1131.CrossRefGoogle Scholar
  2. [2]
    S.J. Wu, J.F. Knott, Proceedings of the Fifth International Conference on Engineering Structural Integrity Assessment, Cambridge, 2000, pp. 247–255Google Scholar
  3. [3]
    S.J. Wu, J.F. Knott, Int. J. Pres. Ves. Pip. 80 (2003) 807–815.CrossRefGoogle Scholar
  4. [4]
    L.W. Cao, S.J. Wu, B. Liu, Mater. Des. 47 (2013) 551–556.CrossRefGoogle Scholar
  5. [5]
    X. Bai, S.J. Wu, P.K. Liaw, Mater. Des. 89 (2016) 759–769.CrossRefGoogle Scholar
  6. [6]
    A.H. Cottrell, B.A. Billy, Proc. Phys. Soc. Lond. A 62 (1949) 49–62.CrossRefGoogle Scholar
  7. [7]
    M.S. Pham, S.R. Holdsworth, Mater. Sci. Eng. A 556 (2012) 122–133.CrossRefGoogle Scholar
  8. [8]
    K.P. Peng, K.W. Qian, W.Z. Chen, Mater. Sci. Eng. A 379 (2004) 372–377.CrossRefGoogle Scholar
  9. [9]
    L.J. Meng, J. Sun, H. Xing, G.W. Pang, J. Nucl. Mater. 394 (2009) 34–38.CrossRefGoogle Scholar
  10. [10]
    J.W. Qiao, Y. Zhang, P.K. Liaw, Intermetallics 18 (2010) 2057–2064.CrossRefGoogle Scholar
  11. [11]
    M. Choi, J.X. Hou, K. Mathis, Y. Kim, D.W. Kim, S. Kim, H. Kwon, H. Choe, Mater. Sci. Eng. A 595 (2014) 165–172.CrossRefGoogle Scholar
  12. [12]
    X.Q. Chang, L.Y. Zhang, Y.B. Yang, J.L. Ren, J. Iron Steel Res. Int. 23 (2016) 64–68.CrossRefGoogle Scholar
  13. [13]
    A. Dubach, F.H. Dalla Torre, J.F. Loffler, Acta Mater. 57 (2009) 881–892.CrossRefGoogle Scholar
  14. [14]
    P.G. McCormick, Acta Metall. 20 (1972) 351–354.CrossRefGoogle Scholar
  15. [15]
    C.J. Tong, M.R. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, S.Y. Chang, Metall. Mater. Trans. A 36 (2005) 1263–1271.CrossRefGoogle Scholar
  16. [16]
    B.A. Sun, C.T. Liu, Y. Yang, J. Iron Steel Res. Int. 23 (2016) 24–30.CrossRefGoogle Scholar
  17. [17]
    C. Gupta, B. Kumawat, J.K. Chakravartty, Mater. Sci. Eng. A 620 (2015) 407–410.CrossRefGoogle Scholar
  18. [18]
    B. Yuan, J.J. Li, J.W. Qiao, J. Iron Steel Res. Int. 24 (2017) 455–461.CrossRefGoogle Scholar
  19. [19]
    D.J. Dyson, S.R. Keown, D. Raynor, J.A. Whiteman, Acta Metall. 14 (1966) 867–875.CrossRefGoogle Scholar
  20. [20]
    S. Xu, X.Q. Wu, E.H. Han, W. Ke, J. Mater. Sci. 44 (2009) 2882–2889.CrossRefGoogle Scholar
  21. [21]
    S. Luo, S.J. Wu, Mater. Sci. Eng. A 596 (2014) 25–31.CrossRefGoogle Scholar
  22. [22]
    A.K. Roy, J. Pal, C. Mukhopadhyay, Mater. Sci. Eng. A 474 (2008) 363–370.CrossRefGoogle Scholar
  23. [23]
    S. Kok, M.S. Bharathi, A.J. Beaudoin, C. Fressengeas, G. Ananthakrishna, L.P. Kubin, M. Lebyodkin, Acta Mater. 51 (2003) 3651–3662.CrossRefGoogle Scholar
  24. [24]
    L.P. Kubin, Y. Estrin, Acta Metall. 38 (1990) 697–708.CrossRefGoogle Scholar
  25. [25]
    W.H. Jiang, G.J. Fan, F.X. Liu, G.Y. Wang, H. Choo, P.K. Liaw, J. Mater. Res. 21 (2006) 2164–2167.CrossRefGoogle Scholar
  26. [26]
    K.A. Dahmen, Y. Ben-Zion, J.T. Uhl, Phys. Rev. Lett. 102 (2009) 175501.CrossRefGoogle Scholar
  27. [27]
    J. Antonaglia, X. Xie, G. Schwarz, M. Wraith, J. Qiao, Y. Zhang, P.K. Liaw, J.T. Uhl, K.A. Dahmen, Sci. Rep. 4 (2014) 4382.CrossRefGoogle Scholar
  28. [28]
    J.J. Li, J.W. Qiao, K.A. Dahmen, W.M. Yang, B.L. Shen, M.W. Chen, J. Iron Steel Res. Int. 24 (2017) 366–371.CrossRefGoogle Scholar
  29. [29]
    C. Gupta, J. Chakravartty, S. Wadekar, J. Dubey, Mater. Sci. Eng. A 292 (2000) 49–55.CrossRefGoogle Scholar
  30. [30]
    C. Keller, M.M. Margulies, I. Guillot, Mater. Sci. Eng. A 536 (2012) 273–275.CrossRefGoogle Scholar
  31. [31]
    V. Shankar, M. Valsan, K. Bhanu Sankara Rao, S.L. Mannan, Metall. Mater. Trans. A 35 (2004) 3129–3139.CrossRefGoogle Scholar
  32. [32]
    M. Hornqvist, B. Karlsson, Procedia Engineering 2 (2010) 265–273.CrossRefGoogle Scholar
  33. [33]
    A. Portevin, F. Le Chatelier, C.R. Acad. Sci. Paris 176 (1923) 507.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Xue Bai
    • 1
    • 2
    • 3
  • Su-jun Wu
    • 1
    • 3
  • Li-jun Wei
    • 1
    • 3
  • Shuai Luo
    • 1
  • Xie Xie
    • 2
  • Peter K. Liaw
    • 2
  1. 1.School of Materials Science and EngineeringBeihang UniversityBeijingChina
  2. 2.Department of Materials Science and EngineeringThe University of TennesseeKnoxvilleUSA
  3. 3.Beijing Key Laboratory of Advanced Nuclear Materials and PhysicsBeihang UniversityBeijingChina

Personalised recommendations