Asynchronous responses of mechanical and magnetic properties to structure relaxation for FeNbB bulk metallic glass

  • Zhi-kai Gao
  • An-ding WangEmail author
  • Ping-bo Chen
  • Cheng-liang Zhao
  • Fu-shan LiEmail author
  • Ai-na HeEmail author
  • Chun-tao Chang
  • Xin-min Wang
  • Chain-tsuan Liu
Original Paper


Asynchronous responses of mechanical and magnetic properties to structure relaxation for the Fe71Nb6B23 bulk metallic glass were systematically investigated. It is interesting that this ternary alloy can combinedly exhibit outstanding magnetic and mechanical properties, especially good ductility, after optimally annealing in structure relaxation stage for eliminating the internal stress and homogenizing the microstructure. The alloy exhibits low coercive force of 1.6 A/m, high effective permeability of 15 × 103, high fracture strength of 4.2 GPa and good plastic strain of 1.8%. It is also found that responses of mechanical and magnetic properties to structure relaxation are asynchronous. The glass transition and crystallization will greatly deteriorate the magnetic and mechanical properties. Here we propose a physical picture and demonstrate that the primary structure factors determining magnetic and mechanical properties are different. This work will bring a promising material for application and a new perspective to study the effect of annealing-induced structure relaxation on mechanical and magnetic properties.


Bulk metallic glass Annealing Mechanical property Magnetic property Structure relaxation 



This work was mainly supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB0300501, 2017YFB0903902), and the National Natural Science Foundation of China (Grant Nos. 51601206, 51771159). An-ding Wang and Chain-tsuan Liu would like to acknowledge the support by General Research Fund of Hong Kong under the grant number of City 102013.


  1. [1]
    W.H. Wang, C. Dong, C.H. Shek, Mater. Sci. Eng. R 44 (2004) 45–89.CrossRefGoogle Scholar
  2. [2]
    W.F. Wu, Y. Li, C.A. Schuh, Philos. Mag. 88 (2008) 71–89.CrossRefGoogle Scholar
  3. [3]
    A. Inoue, B.L. Shen, H. Koshiba, H. Kato, A.R. Yavari, Nat. Mater. 2 (2003) 661–663.CrossRefGoogle Scholar
  4. [4]
    C.J. Gilbert, R.O. Ritchie, W.L. Johnson, Appl. Phys. Lett. 71 (1997) 476–478.CrossRefGoogle Scholar
  5. [5]
    A.R. Yavari, J.J. Lewandowski, J. Eckert, MRS Bull. 32 (2007) 635–638.CrossRefGoogle Scholar
  6. [6]
    D. Zander, B. Heisterkamp, I. Gallino, J. Alloy. Compd. 434 (2007) 234–236.CrossRefGoogle Scholar
  7. [7]
    W. Li, Y. Gao, H. Bei, Sci. Rep. 5 (2015) 14786.CrossRefGoogle Scholar
  8. [8]
    A. Castellero, B. Moser, D.I. Uhlenhaut, F.H. Dalla Torre, J.F. Loeffler, Acta Mater. 56 (2008) 3777–3785.CrossRefGoogle Scholar
  9. [9]
    L. Hu, Y. Yue, J. Phys. Chem. C 113 (2009) 15001–15006.CrossRefGoogle Scholar
  10. [10]
    K.J. Laws, D. Granata, J.F. Loeffler, Acta Mater. 103 (2016) 735–745.CrossRefGoogle Scholar
  11. [11]
    Y.C. Niu, X.F. Bian, W.M. Wang, J. Non-Cryst. Solids 341 (2004) 40–45.Google Scholar
  12. [12]
    X.H. Xu, G. Wang, F.J. Ke, W.H. Wang, Scripta Mater. 59 (2008) 657–660.CrossRefGoogle Scholar
  13. [13]
    C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Mater. 55 (2007) 4067–4109.CrossRefGoogle Scholar
  14. [14]
    A. Makino, C. Chang, T. Kubota, A. Inoue, J. Alloy. Compd. 483 (2009) 616–619.CrossRefGoogle Scholar
  15. [15]
    J. Zhang, C. Chang, A. Wang, B. Shen, J. Non-Cryst. Solids 358 (2012) 1443–1446.Google Scholar
  16. [16]
    M.X. Zhang, A.D. Wang, B.L. Shen, AIP Adv. 2 (2012) 022169.CrossRefGoogle Scholar
  17. [17]
    J.H. Yao, J.Q. Wang, Y. Li, Appl. Phys. Lett. 92 (2008) 251906.CrossRefGoogle Scholar
  18. [18]
    O. Haruyama, K. Sugiyama, M. Sakurai, Y. Waseda, J. Non-Cryst. Solids 353 (2007) 3053–3056.Google Scholar
  19. [19]
    A. Wang, C. Zhao, A. He, H. Men, C. Chang, X. Wang, J. Alloy. Compd. 656 (2016) 729–734.CrossRefGoogle Scholar
  20. [20]
    X. Liang, A. He, A. Wang, J. Pang, C. Wang, C. Chang, K. Qiu, X. Wang, C.T. Liu, J. Alloy. Compd. 694 (2017) 1260–1264.CrossRefGoogle Scholar
  21. [21]
    O. Životský, A. Hendrych, L. Klimša, Y. Jirásková, J. Buršík, J.A.M. Gómez, D. Janičkovič, J. Magn. Magn. Mater. 324 (2012) 569–577.CrossRefGoogle Scholar
  22. [22]
    Q. Hu, X.R. Zeng, M.W. Fu, J. Appl. Phys. 109 (2011) 053520.CrossRefGoogle Scholar
  23. [23]
    C. Zhao, A. Wang, A. He, S. Yue, C. Chang, X. Wang, R.W. Li, J. Alloy. Compd. 659 (2016) 193–197.CrossRefGoogle Scholar
  24. [24]
    P. Denis, C.M. Meylan, C. Ebner, A.L. Greer, M. Zehetbauer, H.J. Fecht, Mater. Sci. Eng. A 684 (2017) 517–523.CrossRefGoogle Scholar
  25. [25]
    A. Inoue, Acta Mater. 48 (2000) 279–306.CrossRefGoogle Scholar
  26. [26]
    T. Bitoh, A. Makino, A. Inoue, J. Appl. Phys. 99 (2006) 08F102.CrossRefGoogle Scholar
  27. [27]
    V.M. Giordano, B. Ruta, Nat. Commun. 7 (2016) 8.Google Scholar
  28. [28]
    Q. Wang, S.T. Zhang, Y. Yang, Y.D. Dong, C.T. Liu, J. Lu, Nat. Commun. 6 (2015) 7876.CrossRefGoogle Scholar
  29. [29]
    G.R. Garrett, M.D. Demetriou, M.E. Launey, W.L. Johnson, Proc. Natl. Acad. Sci. USA 113 (2016) 10257–10262.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringZhengzhou UniversityZhengzhouChina
  2. 2.Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboChina
  3. 3.Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboChina
  4. 4.Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and EngineeringCity University of Hong KongHong KongChina

Personalised recommendations