Controllable SiO2 coating layer of FeSiBPNb amorphous powder cores with excellent soft magnetic properties

  • Ke-yu Huang
  • Ya-qiang DongEmail author
  • Min Liu
  • Ji-hang Ren
  • Shu-han Lu
  • Zhan-kui ZhaoEmail author
  • Chun-tao ChangEmail author
  • Xin-min Wang
Original Paper


Amorphous powder cores based on spherical (Fe0.76Si0.09B0.1P0.05)99Nb1 amorphous powder and their SiO2 layer prepared by in situ coating insulation process were investigated in detail. These cores were characterized by scanning electron microscopy and X-ray diffraction analyses, and the results revealed that the surface layer of the amorphous powder was composed of SiO2 with uniform surface coverage. The thickness of the SiO2 insulating layer could be controlled by adjusting the tetraethyl orthosilicate (TEOS) content. By cold-pressing with epoxy resin under a pressure of 1800 MPa, a ring powder core with an outer diameter of 20.3 mm, inner diameter of 12.7 mm, and height of 5.3 mm was prepared. The FeSiBPNb composite core showed its best properties when the TEOS content was 2 mL/g (the volume of TEOS for each gram of (Fe0.76Si0.09B0.1P0.05)99Nb1 amorphous powder, mL/g), which showed good relative permeability in the high-frequency range of up to 10 MHz and a low core loss of 320 W/kg under the maximum magnetic flux density of 0.1 T and frequency of 100 kHz.


Soft magnetic composite Core loss Relative permeability In situ chemical deposition Amorphous powder 



The work was with the support from the National Key Research and Development Program of China (Grant No. 2017YFB0903902), National Natural Science Foundation of China (Grant Nos. 51601205, 51671035, 51071034, and 51671206), and Ningbo Municipal Nature Science Foundation (Grant No. 2017A610036).


  1. [1]
    E.A. Périgo, S. Nakahara, Y. Pittini-Yamada, Y. de Hazan, T. Graule, J. Magn. Magn. Mater. 323 (2011) 1938–1944.CrossRefGoogle Scholar
  2. [2]
    M. Yagi, I. Endo, I. Otsuka, H. Yamamoto, R. Okuno, H. Koshimoto, A. Shintani, J. Magn. Magn. Mater. 215 (2000) 284–287.CrossRefGoogle Scholar
  3. [3]
    A. Makino, K. Suzuki, A. Inoue, T. Masumoto, Mater. Trans. JIM 32 (1991) 551–556.CrossRefGoogle Scholar
  4. [4]
    B.V. Neamţu, T.F. Marinca, I. Chicinaş, O. Isnard, F. Popa, P. Păşcuţă, J. Alloy. Compd. 600 (2014) 1–7.CrossRefGoogle Scholar
  5. [5]
    S. Chen, Q. Zhao, Y. Qi, F. Liu, M. Wang, R. Jia, D. Zhu, M. Liu, X. Chen, A. Cheng, Poult Sci. 94 (2015) 17–24.CrossRefGoogle Scholar
  6. [6]
    D. Raybould, K.S. Tan, J. Mater. Sci. 20 (1985) 2776–2786.CrossRefGoogle Scholar
  7. [7]
    W.J. Yuan, F.J. Liu, S.J. Pang, Y.J. Song, T. Zhang, Intermetallics 17 (2009) 278–280.CrossRefGoogle Scholar
  8. [8]
    A. Inoue, Acta Mater. 48 (2000) 279–306.CrossRefGoogle Scholar
  9. [9]
    T.P. Phway, A.J. Moses, J. Magn. Magn. Mater. 320 (2008) e611–e613.CrossRefGoogle Scholar
  10. [10]
    H. Ninomiya, Y. Tanaka, A. Hiura, Y. Takada, J. Appl. Phys. 69 (1991) 5358–5360.CrossRefGoogle Scholar
  11. [11]
    G.E. Fish, C.F. Chang, R. Bye, J. Appl. Phys. 64 (1988) 5370–5372.CrossRefGoogle Scholar
  12. [12]
    J. Guo, Y. Dong, Q. Man, Q. Li, C. Chang, X.M. Wang, R.W. Li, J. Magn. Magn. Mater. 401 (2016) 432–435.CrossRefGoogle Scholar
  13. [13]
    C. Chang, C. Qin, A. Makino, A. Inoue, J. Alloy. Compd. 533 (2012) 67–70.CrossRefGoogle Scholar
  14. [14]
    L. Xiaolong, D. Yaqiang, L. Min, C. Chuntao, W. Xin-Min, J. Alloy. Compd. 696 (2017) 1323–1328.CrossRefGoogle Scholar
  15. [15]
    A.H. Taghvaei, H. Shokrollahi, K. Janghorban, H. Abiri, Mater. Des. 30 (2009) 3989–3995.CrossRefGoogle Scholar
  16. [16]
    D. Jiles, IEEE Trans. Magn. 30 (1994) 4326–4328.CrossRefGoogle Scholar
  17. [17]
    A.H. Taghvaei, H. Shokrollahi, M. Ghaffari, K. Janghorban, J. Phys. Chem. Solids 71 (2010) 7–11.CrossRefGoogle Scholar
  18. [18]
    Y.B. Kim, D.H. Jang, H.K. Seok, K.Y. Kim, Mater. Sci. Eng. A 449-451 (2007) 389–393.CrossRefGoogle Scholar
  19. [19]
    H. Shokrollahi, K. Janghorban, J. Mater. Process. Technol. 189 (2007) 1–12.CrossRefGoogle Scholar
  20. [20]
    Y. Kang, Y. Huang, R. Yang, C. Zhang, J. Magn. Magn. Mater. 399 (2016) 149–154.CrossRefGoogle Scholar
  21. [21]
    Z. Wu, X.A. Fan, J. Wang, G. Li, Z. Gan, Z. Zhang, J. Alloy. Compd. 617 (2014) 21–28.CrossRefGoogle Scholar
  22. [22]
    J. Wang, X.A. Fan, Z. Wu, G. Li, J. Mater. Sci. 52 (2017) 7091–7099.CrossRefGoogle Scholar
  23. [23]
    X. Li, G. Lu, Z. Zhang, D. Ju, A. Makino, J. Alloy. Compd. 647 (2015) 917–920.CrossRefGoogle Scholar
  24. [24]
    Y.B. Kim, K. Kim, IEEE Trans. Magn. 42 (2006) 2802–2804.CrossRefGoogle Scholar
  25. [25]
    H.J. Liu, H.L. Su, W.B. Geng, Z.G. Sun, T.T. Song, X.C. Tong, Z.Q. Zou, Y.C. Wu, Y.W. Du, J. Supercond. Nov. Magn. 29 (2015) 463–468.CrossRefGoogle Scholar
  26. [26]
    T.H. Kim, K.K. Jee, Y.B. Kim, D.J. Byun, J.H. Han, J. Magn. Magn. Mater. 322 (2010) 2423–2427.CrossRefGoogle Scholar
  27. [27]
    Y.B. Kim, K.K. Jee, G.B. Choi, J. Appl. Phys. 103 (2008) 07E704.CrossRefGoogle Scholar
  28. [28]
    G.H. Kim, T.H. Noh, G.B. Choi, K.Y. Kim, J. Appl. Phys. 93 (2003) 7211–7213.CrossRefGoogle Scholar
  29. [29]
    H.Y. Choi, S.J. Ahn, T.H. Noh, Phys. Status Solidi A 201 (2004) 1879–1882.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringChangchun University of TechnologyChangchunChina
  2. 2.Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboChina

Personalised recommendations