Influences of preparation techniques on glass-forming ability of Fe–P–B–Si–C amorphous alloys

  • Ji-jun Zhang
  • Ya-qiang Dong
  • Lu-yang Bie
  • Qiang LiEmail author
  • Jia-wei LiEmail author
  • Xin-min Wang
Original Paper


It has been widely accepted that the ultrafast cooling rate is required for the glass formation of amorphous alloys. Here, the larger glass-forming ability (GFA) of Fe76P5(B0.5Si0.3C0.2)19 amorphous alloy was achieved by water quenching at lower cooling rate under argon atmosphere. Cylindrical rods with diameters of 1–2 mm were prepared by water quenching without flux treatment, Cu-mold injection casting, and Cu-mold suction casting, respectively. The influences of the preparation techniques with different cooling rates on GFA, thermal property, and nucleation/growth behavior were examined. The critical diameter of the Fe76P5(B0.5Si0.3C0.2)19 amorphous alloys is 1.7 mm for water quenching while smaller than 1.0 mm for injection casting. Microstructure analysis indicates that the crystallization and solidification processes are quite different between the water-quenched and the injection-cast rods. These findings could deepen fundamental understanding on the relationship between the cooling rate, techniques, and GFA of Fe-based amorphous alloys.


Fe-based amorphous alloy Preparation technique Glass-forming ability Crystallization behavior 



This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFB0300500), National Natural Science Foundation of China (Grant Nos. 51561028 and 51771161), and Ningbo Municipal Natural Science Foundation (Grant No. 2017A610034).


  1. [1]
    M.J. Duarte, J. Klemm, S.O. Klemm, K.J.J. Mayrhofer, M. Stratmann, S. Borodin, A.H. Romero, M. Madinehei, D. Crespo, J. Serrano, S.S.A. Gerstl, P.P. Choi, D. Raabe, F.U. Renner, Science 341 (2013) 372–376.CrossRefGoogle Scholar
  2. [2]
    C. Suryanarayana, A. Inoue, Int. Mater. Rev. 58 (2013) 131–166.CrossRefGoogle Scholar
  3. [3]
    W.M. Yang, H.S. Liu, Y.C. Zhao, A. Inoue, K.M. Jiang, J.T. Huo, H.B. Ling, Q. Li, B.L. Shen, Sci. Rep. 4 (2014) 6233.CrossRefGoogle Scholar
  4. [4]
    F. Wang, A. Inoue, Y. Han, S.L. Zhu, F.L. Kong, E. Zanaeva, G.D. Liu, E. Shalaan, F. Al-Marzouki, A. Obaid, J. Alloy. Compd. 723 (2017) 376–384.CrossRefGoogle Scholar
  5. [5]
    T.D. Shen, R.B. Schwarz, Appl. Phys. Lett. 75 (1999) 49–51.CrossRefGoogle Scholar
  6. [6]
    W.H. Wang, Prog. Mater. Sci. 52 (2007) 540–596.CrossRefGoogle Scholar
  7. [7]
    A. Chrobak, V. Nosenko, G. Haneczok, L. Boichyshyn, B. Kotur, A. Bajorek, O. Zivotsky, A. Hendrych, Mater. Chem. Phys. 130 (2011) 603–608.CrossRefGoogle Scholar
  8. [8]
    W.H. Wang, M.X. Pan, D.Q. Zhao, Y. Hu, H.Y. Bai, J. Phys.: Condens. Matter 16 (2004) 3719–3723.Google Scholar
  9. [9]
    V. Ponnambalam, S.J. Poon, G.J. Shiflet, J. Mater. Res. 19 (2004) 3046–3052.CrossRefGoogle Scholar
  10. [10]
    H. Jian, W. Luo, S. Tao, M. Yan, J. Alloy. Compd. 505 (2010) 315–318.CrossRefGoogle Scholar
  11. [11]
    S.L. Lin, S.F. Chen, J.K. Chen, Y.L. Lin, Intermetallics 18 (2010) 1826–1828.CrossRefGoogle Scholar
  12. [12]
    T. Bitoh, A. Makino, A. Inoue, A.L. Greer, Appl. Phys. Lett. 88 (2006) 182510.CrossRefGoogle Scholar
  13. [13]
    Z.P. Lu, C.T. Liu, J.R. Thompson, W.D. Porter, Phys. Rev. Lett. 92 (2004) 245503.CrossRefGoogle Scholar
  14. [14]
    Z.P. Lu, C.T. Liu, W.D. Porter, Appl. Phys. Lett. 83 (2003) 2581–2583.CrossRefGoogle Scholar
  15. [15]
    J. Schroers, Adv. Mater. 22 (2010) 1566–1597.CrossRefGoogle Scholar
  16. [16]
    W.L. Johnson, G. Kaltenboeck, M.D. Demetriou, J.P. Schramm, X. Liu, K. Samwer, C.P. Kim, D.C. Hofmann, Science 332 (2011) 828–833.CrossRefGoogle Scholar
  17. [17]
    B.L. Shen, M. Akiba, A. Inoue, Appl. Phys. Lett. 88 (2006) 131907.CrossRefGoogle Scholar
  18. [18]
    Z.B. Jiao, H.X. Li, Y. Wu, J.E. Gao, S.L. Wang, S.H. Yi, Z.P. Li, Sci. China, Ser. G 53 (2010) 430–434.CrossRefGoogle Scholar
  19. [19]
    J. Wang, R. Li, N. Hua, L. Huang, T. Zhang, Scripta Mater. 65 (2011) 536–539.CrossRefGoogle Scholar
  20. [20]
    A. Makino, T. Kubota, C.T. Chang, M. Makabe, A. Inoue, Mater. Trans. 48 (2007) 3024–3027.CrossRefGoogle Scholar
  21. [21]
    Q. Li, J. Li, P. Gong, K. Yao, J. Gao, H. Li, Intermetallics 26 (2012) 62–65.CrossRefGoogle Scholar
  22. [22]
    A. Makino, C.T. Chang, T. Kubota, A. Inoue, J. Alloy. Comp. 483 (2009) 616–619.CrossRefGoogle Scholar
  23. [23]
    Q. Li, Metall. Mater. Trans. B 40 (2009) 405–410.CrossRefGoogle Scholar
  24. [24]
    X.H. Lin, W.L. Johnson, J. Appl. Phys. 78 (1995) 6514–6519.CrossRefGoogle Scholar
  25. [25]
    Q. Li, Mater. Lett. 60 (2006) 3113–3117.CrossRefGoogle Scholar
  26. [26]
    Y.H. Liu, D. Wang, K. Nakajima, W. Zhang, A. Hirata, T. Nishi, A. Inoue, M.W. Chen, Phys. Rev. Lett. 106 (2011) 125504.CrossRefGoogle Scholar
  27. [27]
    Y.Q. Cheng, E. Ma, Prog. Mater. Sci. 56 (2011) 379–473.CrossRefGoogle Scholar
  28. [28]
    X. Hu, S.C. Ng, Y.P. Feng, Y. Li, Phys. Rev. B 64 (2001) 172201.CrossRefGoogle Scholar
  29. [29]
    H. Liebermann, C. Graham, P. Flanders, IEEE Trans. Magn. 13 (1977) 1541–1543.CrossRefGoogle Scholar
  30. [30]
    J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549 (2017) 365–369.CrossRefGoogle Scholar
  31. [31]
    C.T. Chang, J.H. Zhang, B.L. Shen, W.H. Wang, A. Inoue, J. Mater. Res. 29 (2014) 1217–1222.CrossRefGoogle Scholar
  32. [32]
    H.X. Li, J.E. Gao, Z.B. Jiao, Y. Wu, Z.P. Lu, Appl. Phys. Lett. 95 (2009) 161905.CrossRefGoogle Scholar
  33. [33]
    Z.H. Zeng, H. Jin, M.J. Chen, W.W. Li, L.C. Zhou, X. Xue, Z. Zhang, Small 13 (2017) 1701388.CrossRefGoogle Scholar
  34. [34]
    D.A. Porter, K.E. Esterling, Phase transformations in metals and alloys, 2nd ed., CRC Press, Boca Raton, 1992.CrossRefGoogle Scholar
  35. [35]
    A. Inoue, Mater. Trans. JIM 36 (1995) 866–875.CrossRefGoogle Scholar
  36. [36]
    J. Schroers, Y. Wu, R. Busch, W.L. Johnson, Acta Mater. 49 (2001) 2773–2781.CrossRefGoogle Scholar
  37. [37]
    J. Schroers, W.L. Johnson, R. Busch, Appl. Phys. Lett. 76(2000) 2343–2345.CrossRefGoogle Scholar
  38. [38]
    J. Schroers, A. Masuhr, W.L. Johnson, R. Busch, Phys. Rev. B 60 (1999) 11855.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  1. 1.Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and Engineering, Chinese Academy of SciencesNingboChina
  2. 2.Zhejiang Province Key Laboratory of Magnetic Materials and Application TechnologyNingbo Institute of Materials Technology and Engineering, Chinese Academy of SciencesNingboChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.School of Physics Science and TechnologyXinjiang UniversityUrumqiChina

Personalised recommendations