Advertisement

Correlation between mechanical and thermodynamic properties for La–Ce–Ni–Cu–Al high-entropy metallic glasses

Original Paper
  • 20 Downloads

Abstract

The mechanical properties, thermodynamic features and their correlation were studied for La–Ce–Ni–Cu–Al high-entropy bulk metallic glasses (HE-BMGs). Compressive testing indicated that the HE-BMGs are ductile on a microscopic scale but brittle on a macroscopic scale, because of the low fragility index m of the HE-BMGs. In the non-isothermal process, the activation energies for glass transition for these HE-BMGs are the lowest of the known HE-BMGs. Large values of the Avrami exponent n imply that the crystallization process proceeded through three-dimensional growth and with an increasing nucleation rate. The activation energy for glass transition (Eg) is almost proportional to the HE-BMG fracture strength, because a higher Eg is required to dislodge the molecules from the glassy configuration for the HE-BMGs with a high strength. The findings provide unambiguous evidence for the correlation between the mechanical and thermodynamic properties.

Keywords

High-entropy bulk metallic glass Fracture mechanism Crystallization Avrami exponent Glass-transition activation energy 

Notes

Acknowledgements

This work was supported by the National Key Research and Development Project of China (2016YFB0300500), MOST 973 Program (No. 2015CB856800), NSF of China (Grant No. 51571079) and the Fundamental Research Funds for the Central Universities in China (No. JZ2016HGPB0671).

References

  1. [1]
    Y. Zhao, D.D. Li, B.Y. Qu, R.L. Zhou, B. Zhang, K. Sato, Intermetallics 84 (2017) 25–29.CrossRefGoogle Scholar
  2. [2]
    Y. Zhao, B. Zhang, K. Sato, Intermetallics 88 (2017) 1–5.CrossRefGoogle Scholar
  3. [3]
    B. Zhang, M.X. Pan, D.Q. Zhao, W.H. Wang, Appl. Phys. Lett. 85 (2004) 61–63.CrossRefGoogle Scholar
  4. [4]
    J.P. Escobedo, Y.M. Gupta, J. Appl. Phys. 107 (2010) 123502.CrossRefGoogle Scholar
  5. [5]
    Y.C. Kim, J.Y. Na, J.M. Park, D.H. Kim, J.K. Lee, W.T. Kim, Appl. Phys. Lett. 83 (2003) 3093–3095.CrossRefGoogle Scholar
  6. [6]
    J.W. Qiao, Z. Wang, J. Iron Steel Res. Int. 23 (2016) 7–13.CrossRefGoogle Scholar
  7. [7]
    Y.P. Lu, Z.Y. Tang, B. Wen, G. Wang, S.W. Wu, T.M. Wang, Y.B. Zhang, Z.N. Chen, Z.Q. Cao, T.J. Li, J. Mater. Sci. Technol. 34 (2018) 344–348.CrossRefGoogle Scholar
  8. [8]
    M. Vaidya, S. Armugam, S. Kashyap, B.S. Murty, J. Non Cryst. Solids 413 (2015) 8–14.Google Scholar
  9. [9]
    B.A. Welk, M.A. Gibson, H.L. Fraser, JOM 68 (2016) 1021–1026.CrossRefGoogle Scholar
  10. [10]
    H. Prasad, S. Singh, B.B. Panigrahi, J. Alloy. Compd. 692 (2017) 720–726.CrossRefGoogle Scholar
  11. [11]
    J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Acta Mater. 62 (2014) 105–113.CrossRefGoogle Scholar
  12. [12]
    M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, P.K. Liaw, Acta Mater. 60 (2012) 5723–5734.CrossRefGoogle Scholar
  13. [13]
    Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, T.J. Li, Sci. Rep. 4 (2014) 6200.CrossRefGoogle Scholar
  14. [14]
    P. Li, A. Wang, C.T. Liu, J. Alloy. Compd. 694 (2017) 55–60.CrossRefGoogle Scholar
  15. [15]
    T.L. Qi, Y.H. Li, A. Takeuchi, G.Q. Xie, H.T. Miao, W. Zhang, Intermetallics 66 (2015) 8–12.CrossRefGoogle Scholar
  16. [16]
    L. Liu, J.B. Zhu, C. Hou, J.C. Li, Q. Jiang, Mater. Des. 46 (2013) 675–679.CrossRefGoogle Scholar
  17. [17]
    Y.P. Lu, X.Z. Gao, L. Jiang, Z.N. Chen, T.M. Wang, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan, Y.H. Zhao, Z.Q. Cao, T.J. Li, Acta Mater. 124 (2017) 143–150.CrossRefGoogle Scholar
  18. [18]
    Y. Zhang, J.W. Qiao, J. Iron Steel Res. Int. 23 (2016) 2–6.CrossRefGoogle Scholar
  19. [19]
    S.F. Zhao, G.N. Yang, H.Y. Ding, K.F. Yao, Intermetallics 61 (2015) 47–50.CrossRefGoogle Scholar
  20. [20]
    H.Y. Ding, Y. Shao, P. Gong, J.F. Li, K.F. Yao, Mater. Lett. 125 (2014) 151–153.CrossRefGoogle Scholar
  21. [21]
    X.Q. Gao, K. Zhao, H.B. Ke, D.W. Ding, W.H. Wang, H.Y. Bai, J. Non Cryst. Solids 357 (2011) 3557–3560.Google Scholar
  22. [22]
    Y. Li, W. Zhang, T. Qi, J. Alloy. Compd. 693 (2017) 25–31.CrossRefGoogle Scholar
  23. [23]
    J.C. Qiao, J.M. Pelletier, N. Li, Y. Yao, J. Iron Steel Res. Int. 23 (2016) 19–23.CrossRefGoogle Scholar
  24. [24]
    Z.F. Yao, J.C. Qiao, C. Zhang, J.M. Pelletier, Y. Yao, J. Non Cryst. Solids 415 (2015) 42–50.Google Scholar
  25. [25]
    K.N. Lad, R.T. Savalia, A. Pratap, G.K. Dey, S. Banerjee, Thermochim. Acta 473 (2008) 74–80.CrossRefGoogle Scholar
  26. [26]
    B. Zhang, D.Q. Zhao, M.X. Pan, W.H. Wang, A.L. Greer, Phys. Rev. Lett. 94 (2005) 205502.CrossRefGoogle Scholar
  27. [27]
    E.S. Park, J.H. Na, D.H. Kim, Appl. Phys. Lett. 91 (2007) 031907.CrossRefGoogle Scholar
  28. [28]
    W.H. Wang, Prog. Mater. Sci. 57 (2012) 487–656.MathSciNetCrossRefGoogle Scholar
  29. [29]
    T. Zhang, R. Li, S. Pang, J. Alloy. Compd. 483 (2009) 60–63.CrossRefGoogle Scholar
  30. [30]
    A. Inoue, T. Zhang, Mater. Trans. JIM 37 (1996) 1726–1729.CrossRefGoogle Scholar
  31. [31]
    X.K. Xi, D.Q. Zhao, M.X. Pan, W.H. Wang, Y. Wu, J.J. Lewandowski, Phys. Rev. Lett. 94 (2005) 125510.CrossRefGoogle Scholar
  32. [32]
    Y. Zhao, B. Zhang, J. Appl. Phys. 122 (2017) 115107.CrossRefGoogle Scholar
  33. [33]
    P. Gong, S. Zhao, X. Wang, K. Yao, Appl. Phys. A 120 (2015) 145–153.CrossRefGoogle Scholar
  34. [34]
    Y.J. Yang, D.W. Xing, J. Shen, J.F. Sun, S.D. Wei, H.J. He, D.G. McCartney, J. Alloy. Compd. 415 (2006) 106–110.CrossRefGoogle Scholar
  35. [35]
    H.B. Ke, H.Y. Xu, H.G. Huang, T.W. Liu, P. Zhang, M. Wu, P.G. Zhang, Y.M. Wang, J. Alloy. Compd. 691 (2017) 436–441.CrossRefGoogle Scholar
  36. [36]
    L. Liu, X. Zhao, C. Ma, T. Zhang, Intermetallics 17 (2009) 241–245.CrossRefGoogle Scholar
  37. [37]
    S. Ranganathan, M. Von Heimendahl, J. Mater. Sci. 16 (1981) 2401–2404.CrossRefGoogle Scholar
  38. [38]
    P. Gong, K.F. Yao, H.Y. Ding, Mater. Lett. 156 (2015) 146–149.CrossRefGoogle Scholar
  39. [39]
    W.X. Jiang, B. Zhang, Sci. China Phys. Mech. Astron. 57 (2014) 1870–1874.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Lin Wu
    • 1
  • Yong Zhao
    • 1
  • Jun-jun Li
    • 1
  • Ji-li Wu
    • 1
  • Bo Zhang
    • 1
  1. 1.Institute of Amorphous Matter Science and School of Materials Science and EngineeringHefei University of TechnologyHefeiChina

Personalised recommendations