Effect of applied stress on γ’-rafting behavior in a Ni-based single-crystal superalloy: experiments and finite element analysis

  • Yuan-chao Yu
  • Yi Ru
  • Yong Shang
  • Yan-ling Pei
  • Shu-suo LiEmail author
  • Sheng-kai Gong
Original Paper


The effect of applied tensile stress on the γ′-rafting behavior for a Ni-based single-crystal superalloy with more negative misfit was investigated. By conducting interrupted creep tests at high temperature, it indicated that the increase in the applied stress accelerates the γ′-rafting (directional coarsening of γ′ phase). In the early stage of rafting, the γ′-cubes start interconnecting at the ends of the parallel-to-applied-stress γ′-channel. The distributions of misfit stress, coherent strain and strain energy density of the γ/γ′ phases are then calculated by finite element analysis. The calculation results show that the rafting acceleration is mainly ascribed to the reduced strain energy density in the parallel-to-applied-stress γ-channel that is driven from the couple interaction of external load and misfit stress. Interface dislocation network formation, resulting from the misfit-induced increase in resolved shear stress, also contributes to the γ′-rafting.


Ni-based superalloy High lattice misfit Rafting Finite element analysis Misfit stress Strain energy density 



This work was financially supported by the National Natural Science Foundation of China (Nos. U1435207, 51771007, 51671015) and National Defense Basic Scientific Research Project (No. A2120132006).


  1. [1]
    T.M. Pollock, S. Tin, J. Propul. Power. 22 (2006) 361–374.CrossRefGoogle Scholar
  2. [2]
    R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, New York, 2006.CrossRefGoogle Scholar
  3. [3]
    S. Socrate, D.M. Parks, Acta Metall. Mater. 41 (1993) 2185–2209.CrossRefGoogle Scholar
  4. [4]
    C.T. Sims, N.S. Stoloff, W.C. Hagel, Superalloys II, Wiley-Interscience, New York, 1987.Google Scholar
  5. [5]
    H. Gabrisch, D. Mukherji, Acta Mater. 48 (2000) 3157–3167.CrossRefGoogle Scholar
  6. [6]
    S. Gao, M. Fivel, A. Ma, A. Hartmaier, J. Mech. Phys. Solids. 76 (2015) 276–290.MathSciNetCrossRefGoogle Scholar
  7. [7]
    J.X. Zhang, T. Murakumo, Y. Koizumi, T. Kobayashi, H. Harada, S. Masaki, Metall. Mater. Trans. A 33 (2002) 3741–3746.CrossRefGoogle Scholar
  8. [8]
    H. Feng, H. Biermann, H. Mughrabi, Mater. Sci. Eng. A 214 (1996) 1–16.CrossRefGoogle Scholar
  9. [9]
    J.F. Ganghoffer, A. Hazotte, S. Denis, A. Simon, Scr. Metall. Mater. 25 (1991) 2491–2496.CrossRefGoogle Scholar
  10. [10]
    L. Müller, U. Glatzel, M. Feller-Kniepmeier, Acta Metall. Mater. 40 (1992) 1321–1327.CrossRefGoogle Scholar
  11. [11]
    T.M. Pollock, A.S. Argon, Acta Metall. Mater. 40 (1992) 1–30.CrossRefGoogle Scholar
  12. [12]
    T.M. Pollock, A.S. Argon, Acta Metall. Mater. 42 (1994) 1859–1874.CrossRefGoogle Scholar
  13. [13]
    K.Y. Cheng, C.Y. Jo, T. Jin, Z.Q. Hu, Mater. Des. 31 (2010) 968–971.CrossRefGoogle Scholar
  14. [14]
    D. Siebörger, H. Knake, U. Glatzel, Mater. Sci. Eng. A 298 (2001) 26–33.CrossRefGoogle Scholar
  15. [15]
    D. Dye, J. Coakley, V.A. Vorontsov, H.J. Stone, R.B. Rogge, Scripta Mater. 61 (2009) 109–112.CrossRefGoogle Scholar
  16. [16]
    T. Link, A. Epishin, U. Brückner, P. Portella, Acta Mater. 48 (2000) 1981–1994.CrossRefGoogle Scholar
  17. [17]
    A.I. Samoilov, R.M. Nazarkin, N.V. Petrushin, N.S. Moiseeva, Russ. Metall. 2011 (2011) 459–464.CrossRefGoogle Scholar
  18. [18]
    G. Scheunemann-Frerker, L. Müller, M. Feller-Kniepmeier, Philos. Mag. A 68 (1993) 193–208.CrossRefGoogle Scholar
  19. [19]
    H. Zhang, Y.F. Liang, S.S. Li, J. Zhou, S.K. Gong, Prog. Nat. Sci.: Mater. Int. 25 (2015) 84–89.CrossRefGoogle Scholar
  20. [20]
    Z.X. Shi, J.R. Li, S.Z. Liu, J. Iron Steel Res. Int. 19 (2012) No. 7, 66–70.CrossRefGoogle Scholar
  21. [21]
    X.P. Wei, W.J. Zheng, Z.G. Song, T. Lei, Q.L. Yong, Q.C. Xie, J. Iron Steel Res. Int. 20 (2013) No. 6, 88–94.CrossRefGoogle Scholar
  22. [22]
    R. Völkl, U. Glatzel, M. Feller-Kniepmeier, Acta Mater. 46 (1998) 4395–4404.CrossRefGoogle Scholar
  23. [23]
    Z.X. Shi, S.Z. Liu, J. Yu, J.R. Li, J. Iron Steel Res. Int. 22 (2015) 738–742.CrossRefGoogle Scholar
  24. [24]
    J. Zhang, J. Wang, H. Harada, Y. Koizumi, Acta Mater. 53 (2005) 4623–4633.CrossRefGoogle Scholar
  25. [25]
    H. Long, H. Wei, Y. Liu, S. Mao, J. Zhang, S. Xiang, Y. Chen, W. Gui, Q. Li, Z. Zhang, X. Han, Acta Mater. 120 (2016) 95–107.CrossRefGoogle Scholar
  26. [26]
    Y. Ru, H. Zhang, Y. Pei, S. Li, X. Zhao, S. Gong, H. Xu, Scripta Mater. 147 (2018) 21–26.CrossRefGoogle Scholar
  27. [27]
    P.J. Henderson, M. Mclean, Acta Metall. 31 (1983) 1203–1219.CrossRefGoogle Scholar
  28. [28]
    S. Tian, C. Chen, H. Yang, Z. Hu, Acta Metall. Sin. 36 (2000) 465–471.Google Scholar
  29. [29]
    S. Tian, Q. Li, Y. Su, H. Yu, J. Xie, S. Zhang, Appl. Phys. A 118 (2014) 1407–1417.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringBeihang UniversityBeijingChina

Personalised recommendations