Advertisement

Microstructure and nanoindentation hardness of shot-peened ultrafine-grained low-alloy steel

  • Xiao-wei Feng
  • Juan Xie
  • Wen-ying Xue
  • Yong-feng ShenEmail author
  • Hong-bo Wang
  • Zhen-yu Liu
Original Paper
  • 91 Downloads

Abstract

The effect of shot peening (SP) on microstructure and hardness of ultrafine-grained (UFG) low-alloy steel was investigated. With increasing shot-peening time from 0.5 to 1.5 h, grain size of UFG low-alloy steel decreases from 400 to 280 nm at surface whilst that of the layer with a depth of 160 μm decreases from (230 ± 15) to (75 ± 5) nm. Interestingly, nanoindentation shows that hardness increases linearly with increasing the SP duration, reaching a value as high as (7.10 ± 0.1) GPa at the depth of 160 µm after the SP duration of 1.5 h. The thickness of the SP treated layer is measured as ~ 300 μm. The Hall–Petch (H–P) relationship was established for the hardening layer. Correspondingly, abrasion resistance should be ~ 51% higher than that of as-prepared UFG low-alloy steel. As shown in SP processing, grain refinement is the key factor responsible for the strengthening of the studied steel.

Keywords

Low-alloy steel Shot peening Grain refinement Nanoindentation Hardness 

Notes

Acknowledgements

This project was supported by NSAF (Grant No. U1430132), the National Natural Science Foundation of China (NSFC) (Grant No. 51574079), and the Science and Technology Research Project of Education Department of Liaoning Province (L20150177).

References

  1. [1]
    K. Abbaszadeh, H. Saghafian, S. Kheirandish, J. Mater. Sci. Technol. 28 (2012) 336–342.CrossRefGoogle Scholar
  2. [2]
    G. Krauss, Steels-processing, structure, and performance, ASM International, Materials Park, OH, 2005, pp.251–262.Google Scholar
  3. [3]
    H.K.D.H. Bhadeshia, Prog. Mater. Sci. 57 (2012) 268–435.CrossRefGoogle Scholar
  4. [4]
    M. Song, K. Guan, Eng. Fail. Anal. 18 (2011) 1613–1618.CrossRefGoogle Scholar
  5. [5]
    K.S. Kumar, H. Van Swygenhoven, S. Suresh, Acta Mater. 51 (2003) 5743–5774.CrossRefGoogle Scholar
  6. [6]
    W. Pang, H.C. Man, T.M. Yue, Mater. Sci. Eng. A 390 (2005) 144–153.CrossRefGoogle Scholar
  7. [7]
    Y.F. Shen, W.Y. Xue, Y.D. Wang, Z.Y. Liu, L. Zuo, Surf. Coat. Technol. 202 (2008) 5140–5145.CrossRefGoogle Scholar
  8. [8]
    Y.F. Shen, W.Y. Xue, Z.Y. Liu, L. Zuo, Surf. Coat. Technol. 205 (2010) 632–640.CrossRefGoogle Scholar
  9. [9]
    Y.Y. Chang, D.Y. Wang, Surf. Coat. Technol. 200 (2005) 2187–2191.CrossRefGoogle Scholar
  10. [10]
    Z. Sun, D. Retraint, T. Baudin, A.L. Helbert, F. Brisset, M. Chemkhi, J. Zhou, P. Kanouté, Mater. Charact. 124 (2017) 117–121.CrossRefGoogle Scholar
  11. [11]
    J.N. Sahu, C. Sasikumar, Mater. Today: Proceedings 3 (2016) 1968–1976.Google Scholar
  12. [12]
    M.R. Menezes, C. Godoy, V.T.L. Buono, M.M.M. Schvartzman, J.C. Avelar-Batista Wilson, Surf. Coat. Technol. 309 (2017) 651–662.CrossRefGoogle Scholar
  13. [13]
    A.T. Vielma, V. Llaneza, F.J. Belzunce, Surf. Coat. Technol. 249 (2014) 75–83.CrossRefGoogle Scholar
  14. [14]
    X. Wu, N. Tao, Y. Hong, B. Xu, J. Lu, K. Lu, Acta Mater. 50 (2002) 2075–2084.CrossRefGoogle Scholar
  15. [15]
    V. Pandey, J.K. Singh, K. Chattopadhyay, N.C. Santhi Srinivas, V. Singh, J. Alloy. Compd. 723 (2017) 826–840.CrossRefGoogle Scholar
  16. [16]
    S.K. Ghosh, P.K. Limaye, B.P. Swain, N.L. Soni, R.G. Agrawal, R.O. Dusane, A.K. Grover, Surf. Coat. Technol. 201 (2007) 4609–4618.CrossRefGoogle Scholar
  17. [17]
    A. Leyland, A. Matthews, Surf. Coat. Technol. 177–178 (2004) 317–324.CrossRefGoogle Scholar
  18. [18]
    C. Fischer-Cripps, Nanoindentation, Springer, New York, 2002.CrossRefGoogle Scholar
  19. [19]
    E. Merson, V. Danilov, D. Merson, A. Vinogradov, Eng. Fract. Mech. 183 (2017) 147–158.CrossRefGoogle Scholar
  20. [20]
    D.B. Hovis, A.H. Heuer, J. Microsc. 240 (2010) 173–180.MathSciNetCrossRefGoogle Scholar
  21. [21]
    E. Merson, A.V. Kudrya, V.A. Trachenko, D. Merson, V. Danilov, A. Vinogradov, Mater. Sci. Eng. A 665 (2016) 35–46.CrossRefGoogle Scholar
  22. [22]
    N. Jia, Y.F. Shen, J.W. Liang, X.W. Feng, H.B. Wang, R.D.K. Misra, Sci. Rep. 7 (2017) 2079.CrossRefGoogle Scholar
  23. [23]
    S.M. Hassani-Gangaraj, K.S. Cho, H.J.L. Voigt, M. Guagliano, C.A. Schuh, Acta Mater. 97 (2015) 105–115.CrossRefGoogle Scholar
  24. [24]
    C. You, M. Achintha, B.Y. He, P.A.S. Reed, Int. J. Fatigue 103 (2017) 99–111.CrossRefGoogle Scholar
  25. [25]
    G. Fargas, J.J. Roa, A. Mateo, Mater. Sci. Eng. A 641 (2015) 290–296.CrossRefGoogle Scholar
  26. [26]
    W.C. Oliver, G.M. Pharr, J. Mater. Res. 19 (2004) 3–20.CrossRefGoogle Scholar
  27. [27]
    R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, S. Suresh, Acta Mater. 51 (2003) 5159–5172.CrossRefGoogle Scholar
  28. [28]
    X. Wang, Y.S. Li, Q. Zhang, Y.H. Zhao, Y.T. Zhu, J. Mater. Sci. Technol. 33 (2017) 758–761.CrossRefGoogle Scholar
  29. [29]
    M.A. Mayers, K.K. Chawla, Mechanical behavior of materials, Prentice Hall, Inc., NJ, 1999.Google Scholar
  30. [30]
    Y.F. Shen, C.M. Wang, X. Sun, Mater. Sci. Eng. A 528 (2011) 8150–8156.CrossRefGoogle Scholar
  31. [31]
    A.R. Marder, B.L. Bramfitt, Metall. Trans. A 7 (1976) 365–372.CrossRefGoogle Scholar
  32. [32]
    R. Song, D. Ponge, D. Raabe, J.G. Speer, D.K. Matlock, Mater. Sci. Eng. A 441 (2006) 1–17.CrossRefGoogle Scholar
  33. [33]
    J.F. Zhang, Z.F. Zhou, Friction wear and anti-wear technology, Tianjin Science & Technology Translation & Publishing Corp., Tianjin, 1993.Google Scholar
  34. [34]
    A. Zammit, S. Abela, L. Wagner, M. Mhaede, R. Wan, M. Grech, Surf. Coat. Technol. 308 (2016) 213–219.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Xiao-wei Feng
    • 1
  • Juan Xie
    • 2
  • Wen-ying Xue
    • 3
  • Yong-feng Shen
    • 2
    Email author
  • Hong-bo Wang
    • 1
  • Zhen-yu Liu
    • 3
  1. 1.Institute of Systems Engineering of China Academy of Engineering PhysicsMianyangChina
  2. 2.Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and EngineeringNortheastern UniversityShenyangChina
  3. 3.The State Key Lab of Rolling and AutomationNortheastern UniversityShenyangChina

Personalised recommendations