Combustion performance of nozzles with multiple gas orifices in large ladles for temperature uniformity

  • Fei Yuan
  • Hong-Bing Wang
  • Pei-Ling Zhou
  • An-Jun Xu
Original Paper
  • 12 Downloads

Abstract

In order to improve the baking temperature uniformity of the large ladle in steelmaking plants, the flame combustion characteristics of nozzles with different inner structures were numerically simulated with the finite volume method code Fluent. The flow field and premixed combustion reaction inside and outside the nozzle with multiple gas orifices were exhibited. Meanwhile, the influences of the gas injecting angle and the number of gas orifices on temperature, velocity, and pressure fields were studied. The results show that the flame length and width at the rear of flame temperature field reach the maximum values in the nozzle with the gas injecting angle of 20° and 4 gas orifices for the control of premixed combustion inside the nozzle, which could provide better temperature uniformity in ladles. The length of the 1273 K isothermal surface is 4.89 m, and the cross-section area at 4 m away from the outlet of the nozzle is 0.13 m2. The pressure losses of different types of nozzles range from 112.2 to 169.4 Pa and decrease with the decrement in gas injecting angle and the number of gas orifices. The ladle bottom preheating temperature is increased by 320–360 K for the optimized nozzle. The inner surface temperature differences between wall and bottom of the ladle are less than 10%. There is good baking temperature uniformity after the application of optimum structurally designed nozzles.

Keywords

Ladle Nozzle Preheating Flame Combustion performance Gas orifice Temperature uniformity 

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFB0601301) and National Natural Science Foundation of China (51674030, 51574032).

References

  1. [1]
    C.P. Liu, G.Y. Ma, L. Yuan, D.S. Wang, T.F. Zhang, W.D. Li, Z. Jia, Energy Metall. Ind. 36 (2017) No. 1, 3–5.Google Scholar
  2. [2]
    J.P. Ou, Study on application of HTAC in metallurgy and its optimization with numerical simulation, Central South University, Changsha, 2004.Google Scholar
  3. [3]
    F. Yuan, A.J. Xu, D.F. He, H.B. Wang, J. Harbin Inst. Technol. 48 (2016) No. 7, 176–181.Google Scholar
  4. [4]
    W. Liu, P. Long, M.L. Chai, Z. Chen, X.H. Yu, Chin. J. Process. Eng. 15 (2015) 259–265.Google Scholar
  5. [5]
    F. Yuan, S.C. Zhou, Z.C. Hou, H.B. Wang, A.J. Xu, D.F. He, Energy Metall. Ind. 35 (2016) No. 3, 21–24.Google Scholar
  6. [6]
    S.M. Hashemi, S.A. Hashemi, Fuel 202 (2017) 56–65.CrossRefGoogle Scholar
  7. [7]
    L.L. Ji, D.F. He, A.J. Xu, H.B. Wang, X.F. Ge, Iron and Steel 48 (2013) No. 4, 76–81.Google Scholar
  8. [8]
    B.N. Zhao, X. Luo, Forg. Stamp. Technol. 39 (2014) No. 11, 81–85.Google Scholar
  9. [9]
    H. Tsuji, A.K. Gupta, T. Hasegawa, M. Katsuki, K. Kishimoto, M. Morita, High temperature air combustion: from energy conservation to pollution reduction, CRC Press, New York, 2003.Google Scholar
  10. [10]
    M. Baigmohammadi, S. Tabejamaat, M. Faghani-Lamraski, Energy 121 (2017) 657–675.CrossRefGoogle Scholar
  11. [11]
    H. Taghavifar, S. Khalilarya, S. Jafarmadar, F. Baghery, Appl. Math. Model. 40 (2016) 8630–8646.MathSciNetCrossRefGoogle Scholar
  12. [12]
    Y. Afarin, S. Tabejamaat, Int. J. Hydrogen Energ. 38 (2013) 3447–3458.CrossRefGoogle Scholar
  13. [13]
    H.F. Elattar, E. Specht, A. Fouda, A.S. Bin-Mahfouz, Heat Mass Transf. 52 (2016) 2635–2648.CrossRefGoogle Scholar
  14. [14]
    Q. Xu, J. X. Feng, Appl. Therm. Eng. 118 (2017) 734–741.CrossRefGoogle Scholar
  15. [15]
    X.Y. Leng, Y. Jin, Z.X. He, W.Q. Long, K. Nishida, Fuel 197 (2017) 31–41.CrossRefGoogle Scholar
  16. [16]
    M.H.S. Moghaddam, M.S. Moghaddam, M. Khorramdel, Energy 125 (2017) 654–662.CrossRefGoogle Scholar
  17. [17]
    H.S. Zhen, Y.S. Choy, C.W. Leung, C.S. Cheung, Appl. Energy 88 (2011) 2917–2924.CrossRefGoogle Scholar
  18. [18]
    S. Som, S.K. Aggarwal, Combust. Flame 157 (2010) 1179–1193.CrossRefGoogle Scholar
  19. [19]
    S. Som, A.I. Ramirez, D.E. Longman, S.K. Aggarwal, Fuel 90 (2011) 1267–1276.CrossRefGoogle Scholar
  20. [20]
    Y. Yu, M. Shademan, R.M. Barron, R. Balachandar, Eng. Appl. Comput. Fluid Bech. 6 (2012) 412–425.Google Scholar
  21. [21]
    J.S. Cai, H.M. Tsai, F. Liu, Comput. Fluids 39 (2010) 539–552.CrossRefGoogle Scholar
  22. [22]
    M. Aligoodarz, M. Soleimanitehrani, H. Karrabi, F. Ehsaniderakhshan, Proc. Inst. Eng. Part G J. Aerosp. Eng. 230 (2016) 2379–2391.CrossRefGoogle Scholar
  23. [23]
    Tongji University, Chongqing University, Harbin Institute of Technology, Beijing University of Civil Engineering and Architecture, Gas combustion and utilization, 4th edition. China Architecture and Building Press, Beijing, 2011.Google Scholar
  24. [24]
    A. Khoshhal, M. Rahimi, A.A. Alsairafi, Numer. Heat Transf. Part A 59 (2011) 633–651.CrossRefGoogle Scholar
  25. [25]
    J.M. Loy, S.R. Mathur, J.Y. Murthy, J. Heat Transf. 137 (2015) 012402.CrossRefGoogle Scholar
  26. [26]
    G.N. Lygidakis, I.K. Nikolos, Numer. Heat Transf. Part B 62 (2012) 289–314.CrossRefGoogle Scholar
  27. [27]
    D.C. Haworth, Prog. Energy Combust. Sci. 36 (2010) 168–259.CrossRefGoogle Scholar
  28. [28]
    L.K. Ma, B. Naud, D. Roekaerts, Flow Turbul. Combust. 96 (2016) 469–502.CrossRefGoogle Scholar
  29. [29]
    S. Park, J.A. Kim, C. Ryu, W. Yang, Y.J. Kim, S. Seo, J. Mech. Sci. Technol. 26 (2012) 1633–1641.CrossRefGoogle Scholar
  30. [30]
    Y.H. Nie, H.Q. Chen, J. Northeast. Univ. 22 (2001) 443–445.Google Scholar
  31. [31]
    T.F. Smith, Z.F. Shen, J.N. Friedman, J. Heat Transf. 104 (1982) 602–608.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Fei Yuan
    • 1
    • 2
  • Hong-Bing Wang
    • 3
  • Pei-Ling Zhou
    • 4
  • An-Jun Xu
    • 1
    • 2
  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina
  3. 3.School of Computer and Communication EngineeringUniversity of Science and Technology BeijingBeijingChina
  4. 4.State Key Laboratory of High-Efficient Mining and Safety of Metal Mines, Ministry of EducationUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations