Journal of Iron and Steel Research International

, Volume 26, Issue 9, pp 983–990 | Cite as

Evolution of deformation twins with strain rate in a medium-manganese wear-resistant steel Fe–8Mn–1C–1.2Cr–0.2V

  • J. Chen
  • J.J. WangEmail author
  • H. Zhang
  • W.G. Zhang
  • C.M. Liu
Original Paper


Microstructure evolutions of the medium-manganese wear-resistant steel Fe–8Mn–1C–1.2Cr–0.2V (in wt.%) with stacking-fault energy of 22 mJ m−2 during deformation at strain rate ranging of 10−2–1 s−1 were analyzed by means of X-ray diffraction, field emission scanning electron microscopy and high-resolution transmission electron microscopy. The results indicate that the twinning-induced plasticity effect is the main strengthening mechanism of the studied steel, whilst the transformation-induced plasticity effect only occurs at high strain rate. With an increase in strain rate, volume fraction of the deformation twins, in particular that of the secondary twins, increases significantly along with decreasing average size. When applied strain rate is higher than 10−1 s−1, the parallel deformation twins are turned into a crossing morphology, and the original straight twin boundaries exhibit a ladder feature, which is attributed to the interactions between regular dislocations and twin dislocations at the twin boundary. The critical strain, a key indicator of the initiation of deformation twin, decreases with increasing strain rate. In addition, the ductility and strength of medium-manganese wear-resistant steel Fe–8Mn–1C–1.2Cr–0.2V are mainly determined by the shape and volume fraction of deformation twins.


Medium-manganese wear-resistant steel Stacking fault Twinning-induced plasticity effect Secondary twin Strain hardening rate 



The authors gratefully appreciate the financial support by the National Natural Science Foundation of China (Grant Nos. 51471048 and U1860201) and the Basic Research Program of Key Laboratory of Liaoning Province (LZ2015035).


  1. [1]
    S.G. Peng, R.B. Song, Z.D. Tan, C.H. Cai, K. Guo, Z.H. Wang, J. Iron Steel Res. Int. 23 (2016) 857−866.CrossRefGoogle Scholar
  2. [2]
    T. Ogawa, M. Koyama, C.C. Tasan, K. Tsuzaki, H. Noguchi, J. Mater. Sci. 52 (2017) 7868−7882.CrossRefGoogle Scholar
  3. [3]
    C.L. Zhuang, J.H. Liu, J. Iron Steel Res. Int. 25 (2018) 546−553.CrossRefGoogle Scholar
  4. [4]
    H.R. Ezatpour, M. Torabi-Parizi, G.R. Ebrahimi, A. Momeni, Steel Res. Int. 89 (2018) 1700559.CrossRefGoogle Scholar
  5. [5]
    D.V. Lychagin, A.V. Filippov, E.A. Kolubaev, O.S. Novitskaia, Y.I. Chumlyakov, A.V. Kolubaev, Tribol. Int. 119 (2018) 1−18.CrossRefGoogle Scholar
  6. [6]
    C. Chen, B. Lv, H. Ma, D.Y. Sun, F.C. Zhang, Tribol. Int. 121 (2018) 389−399.CrossRefGoogle Scholar
  7. [7]
    L.L. Ma, Y.H. Wei, L.F. Hou, C.L. Guo, J. Iron Steel Res. Int. 23 (2016) 677−684.CrossRefGoogle Scholar
  8. [8]
    M. Lindroos, A. Laukkanen, G. Cailletaud, V.T. Kuokkala, Wear 396−397 (2018) 56−66.CrossRefGoogle Scholar
  9. [9]
    L. Halbauer, R. Zenker, A. Weidner, A. Buchwalder, H. Biermann, Steel Res. Int. 87 (2016) 436−444.CrossRefGoogle Scholar
  10. [10]
    O. Bouaziz, J.P. Masse, G. Petitgand, M.X. Huang, Adv. Eng. Mater. 18 (2016) 56−59.CrossRefGoogle Scholar
  11. [11]
    Z. Wu, C.M. Parish, H. Bei, J. Alloy. Compd. 647 (2015) 815−822.CrossRefGoogle Scholar
  12. [12]
    F.M. Qin, Y.J. Li, W.W. He, X.D. Zhao, H.Q. Chen, Met. Mater. Int. 23 (2017) 1087−1096.CrossRefGoogle Scholar
  13. [13]
    Z.L. Li, D. Chen, J. Kang, G. Yuan, G.D. Wang, Steel Res. Int. 89 (2018) 1700484.CrossRefGoogle Scholar
  14. [14]
    C. Weigelt, G. Schmidt, C.G. Aneziris, R. Eckner, D. Ehinger, L. Krüger, C. Ullrich, D. Rafaja, J. Alloy. Compd. 695 (2017) 9−20.CrossRefGoogle Scholar
  15. [15]
    B. Hutchinson, N. Ridley, Scripta Mater. 55 (2006) 299−302.CrossRefGoogle Scholar
  16. [16]
    J.K. Kim, B.C. De Cooman, Mater. Sci. Eng. A 676 (2016) 216−231.CrossRefGoogle Scholar
  17. [17]
    D. Siafakas, T. Matsushita, Å. Lauenstein, S. Ekerot, A.E.W. Jarfors, Steel Res. Int. 87 (2016) 1344−1355.CrossRefGoogle Scholar
  18. [18]
    X.F. Zhang, H. Yang, D.P. Leng, L. Zhang, Z.Y. Huang, G. Chen, J. Iron Steel Res. Int. 23 (2016) 963−972.CrossRefGoogle Scholar
  19. [19]
    T. Rahmaan, A. Bardelcik, J. Imbert, C. Butcher, M.J. Worswick, Int. J. Impact Eng. 88 (2016) 72−90.CrossRefGoogle Scholar
  20. [20]
    A. Khosravifard, M.M. Moshksar, R. Ebrahimi, Mater. Des. 52 (2013) 495−503.CrossRefGoogle Scholar
  21. [21]
    A. Das, M. Ghosh, S. Tarafder, S. Sivaprasad, D. Chakrabarti, Mater. Sci. Eng. A 680 (2017) 249−258.CrossRefGoogle Scholar
  22. [22]
    J.T. Benzing, W.A. Poling, D.T. Pierce, J. Bentley, K.O. Findley, D. Raabe, J.E. Wittig, Mater. Sci. Eng. A 711 (2018) 78−92.CrossRefGoogle Scholar
  23. [23]
    J.S. Kim, J.B. Jeon, J.E. Jung, K.K. Um, Y.W. Chang, Met. Mater. Int. 20 (2014) 41−47.CrossRefGoogle Scholar
  24. [24]
    M.H. Cai, W.J. Zhu, N. Stanford, L.B. Pan, Q. Chao, P.D. Hodgson, Mater. Sci. Eng. A 653 (2016) 35−42.CrossRefGoogle Scholar
  25. [25]
    Z.P. He, Y.L. He, Y.T. Ling, Q.H. Wu, Y. Gao, L. Li, J. Mater. Process. Technol. 212 (2012) 2141−2147.CrossRefGoogle Scholar
  26. [26]
    R.E. Schramm, R.P. Reed, Metall. Trans. A 6 (1975) 1345−1351.CrossRefGoogle Scholar
  27. [27]
    N. Chaudhary, A. Abu-Odeh, I. Karaman, R. Arróyave, J. Mater. Sci. 52 (2017) 11048−11076.CrossRefGoogle Scholar
  28. [28]
    F. Berrenberg, C. Haase, L.A. Barrales-Mora, D.A. Molodov, Mater. Sci. Eng. A 681 (2017) 56−64.CrossRefGoogle Scholar
  29. [29]
    S. Curtze, V.T. Kuokkala, Acta Mater. 58 (2010) 5129−5141.CrossRefGoogle Scholar
  30. [30]
    H.X. Jin, J.Q. Zhou, J. Mater. Sci. 52 (2017) 4647−4657.CrossRefGoogle Scholar
  31. [31]
    E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 128 (2017) 120−134.CrossRefGoogle Scholar
  32. [32]
    J.G. Kim, S.M. Baek, W.T. Cho, T.J. Song, K.G. Chin, S. Lee, H.S. Kim, Met. Mater. Int. 23 (2017) 459−464.CrossRefGoogle Scholar
  33. [33]
    C.Y. Lee, J. Jeong, J. Han, S.J. Lee, S. Lee, Y.K. Lee, Acta Mater. 84 (2015) 1−8.CrossRefGoogle Scholar
  34. [34]
    Z.Y. Tang, R.D.K. Misra, M. Ma, N. Zan, Z.Q. Wu, H. Ding, Mater. Sci. Eng. A 624 (2015) 186−192.CrossRefGoogle Scholar
  35. [35]
    C. Kawalla, M. Höck, M. Ullmann, C.M. Ringle, Arch. Civ. Mech. Eng. 18 (2018) 227−234.CrossRefGoogle Scholar
  36. [36]
    G. Casillas, A.A. Gazder, E.V. Pereloma, A.A. Saleh, Mater. Charact. 123 (2017) 275−281.CrossRefGoogle Scholar
  37. [37]
    D.T. Pierce, J. Bentley, J.A. Jiménez, J.E. Wittig, Scripta Mater. 66 (2012) 753−756.CrossRefGoogle Scholar
  38. [38]
    Z. Yanushkevich, A. Belyakov, C. Haase, D.A. Molodov, R. Kaibyshev, Mater. Sci. Eng. A 651 (2016) 763−773.CrossRefGoogle Scholar
  39. [39]
    E. Welsch, D. Ponge, S.M.H. Haghighat, S. Sandlöbes, P. Choi, M. Herbig, S. Zaefferer, D. Raabe, Acta Mater. 116 (2016) 188−199.CrossRefGoogle Scholar
  40. [40]
    B.B. He, H.W. Luo, M.X. Huang, Int. J. Plast. 78 (2016) 173−186.CrossRefGoogle Scholar
  41. [41]
    J.E. Jung, J. Park, J.S. Kim, J.B. Jeon, S.K. Kim, Y.W. Chang, Met. Mater. Int. 20 (2014) 27−34.CrossRefGoogle Scholar
  42. [42]
    E.J. Seo, J.K. Kim, L. Cho, J. Mola, C.Y. Oh, B.C. De Cooman, Acta Mater. 135 (2017) 112−123.CrossRefGoogle Scholar
  43. [43]
    L. Lu, Z.S. You, Acta Metall. Sin. 50 (2014) 129−136.Google Scholar
  44. [44]
    F.M. Qin, H. Zhu, Z.X. Wang, X.D. Zhao, W.W. He, H.Q. Chen, Mater. Sci. Eng. A 684 (2017) 634−644.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • J. Chen
    • 1
  • J.J. Wang
    • 1
    • 2
    Email author
  • H. Zhang
    • 3
  • W.G. Zhang
    • 1
  • C.M. Liu
    • 1
    • 4
  1. 1.Key Laboratory for Anisotropy and Texture of Materials, Ministry of EducationNortheastern UniversityShenyangChina
  2. 2.School of Materials Science and EngineeringNortheastern UniversityShenyangChina
  3. 3.Baosteel Special Steel Co., Ltd.ShanghaiChina
  4. 4.Northeastern Institute of Metal Materials Co., Ltd.ShenyangChina

Personalised recommendations